Abstract:
A frequency converter system includes a source that emits a beam having a wide spectral band; and a frequency conversion cell including 1) a birefringent nonlinear crystal having a first phase-matching wavelength, with an input face that receives the beam, an output face that emits at least one frequency-converted beam, and at least two parallel faces different from the input and output faces; 2) means for applying an external mechanical force to at least one of said two parallel faces, resulting in a variation in the birefringence of the nonlinear crystal, the value of the applied external mechanical force being determined so as to obtain phase matching at a second phase-matching wavelength different from the first phase-matching wavelength; and 3) means for adjusting the external mechanical force for wavelength tunability in the frequency conversion cell.
Abstract:
An apparatus for generating electromagnetic radiation includes a pump laser so adapted that in operation of the apparatus it generates electromagnetic continuous-wave pump radiation; an optical parametric oscillator which is arranged in the beam path of the pump radiation and has a non-linear optical crystal, and is so adapted that in operation of the apparatus it generates signal and idler radiation from the pump radiation, and a non-linear optical device having a non-linear optical crystal, being arranged at least in a beam path of the signal radiation or idler radiation, and being so adapted that in operation of the apparatus it generates from the signal or idler radiation electromagnetic radiation at a frequency greater than a frequency of the signal or idler radiation. The non-linear optical crystal being heated in a furnace so that the crystal has a temperature gradient in the beam direction of the signal or idler radiation.
Abstract:
A terahertz-wave generating element includes a waveguide including an electro-optic crystal; an optical coupling member that extracts a terahertz wave, which is generated from the electro-optic crystal as a result of light propagating through the waveguide, to a space; and at least two electrodes that cause a first-order electro-optic effect in the electro-optic crystal by applying an electric field to the waveguide so as to change a propagation state of the light propagating through the waveguide. A crystal axis of the electro-optic crystal of the waveguide is set such that the terahertz wave generated by a second-order nonlinear optical process and the light propagating through the waveguide are phase-matched.
Abstract:
A laser apparatus generating frequency converted light. Embodiments of the laser apparatus described herein apply a cascade of nonlinear frequency mixers for sum frequency generation (SFG) or difference frequency generation (DFG) between two frequency components of a spectrally combined laser beam with at least two spectral components originating from two respective laser sources, SFG of two frequency components beams offers up to a factor of four amplification of output power over SHG of a single laser beam.
Abstract:
In at least one embodiment a laser system includes a fiber laser source, a polarization controller and a wavelength converter. The relative power distribution between a pump wavelength and a signal wavelength is controllable using the polarization controller. An optional phase compensator is used to control polarization state of the output laser beam. In various embodiments the relative power distribution among multiple wavelengths may be controlled over a range of at least about 100:1.
Abstract:
A method, system and apparatus for automatically determining operating conditions of a periodically poled lithium niobate crystal in a laser system are provided. The system comprise: a laser; a periodic poled lithium niobate (PPLN) crystal for receiving laser input from the laser; a temperature control device for adjusting the temperature of the PPLN crystal; a temperature sensor for monitoring the temperature of the PPLN crystal; and a computing device. While the PPLN crystal is receiving laser input, temperature of the PPLN crystal is changed using the temperature control device. The computing device monitors the temperature of the PPLN crystal and corresponding power of the temperature control device during the changing, the temperature monitored using the temperature sensor. The computing device determines one or more of operating conditions of the temperature control device and an operating temperature of the PPLN crystal from a function of the power vs. the temperature.
Abstract:
The invention relates to an optical bank (1) comprising a carrier (10) for receiving optical components (60, 70) and a crystal (30) that is mechanically connected to the carrier, for changing the frequency of the light irradiated into the crystal (30) from a light source (50). Two rails (12) are arranged essentially in parallel on the carrier (10). The crystal (30) and the carrier (10) are mechanically connected by a surface of the rails (12), facing away from the carrier (10). A heat conducting element (20) is arranged on the crystal, said heat conducting element being applied to the surfaces of the rails (12), that face away from the carrier (10).
Abstract:
In order to create a stable non-linear optical effect with high efficiency for a plurality of input lights having different wavelengths, according to a first aspect of the present invention, provided is a wavelength conversion apparatus comprising an input section into which input light is input; a wavelength converting section that includes a polarity inverting structure whose polarity inverts periodically and that, in response to the input of light having a wavelength corresponding to the period with which the polarity inverts, converts the wavelength of the light; and a direction changing section that changes a progression direction in which the input light passes through the polarity inverting structure, according to the wavelength of the input light, without changing relative positions of the input section and the polarity inverting structure. Also provided are a light source apparatus and a wavelength converting method.
Abstract:
In an optical device 1 in which a wavelength converting element 20 is disposed as an optical element on a silicon substrate 10, configuration includes heaters 40a and 40b formed on the silicon substrate 10; and micro bumps 30a, 30b that are made of Au, that bond the silicon substrate 10 and the wavelength converting element 20, and that transfer the heat generated by the heaters 40a, 40b to the wavelength converting element 20.
Abstract:
The invention relates to a laser system including a nonlinear crystal having a first length portion and a second length portion. The nonlinear crystal disposed to receive input light from the laser for converting the input light into frequency converted light; wherein the nonlinear crystal is configured so that the first length portion of the nonlinear crystal is phase matching for the input light and the frequency converted light, and the second length portion of the nonlinear crystal is phase mismatching for the input light and the frequency converted light. Phase mismatching means may include a temperature controlling board, a clamp, or electrodes.