Abstract:
A thyristor-based memory device may comprise a commonly-implanted base region, in which a common emitter region may be implanted for the left and the right thyristors in a mirror-image pair. The implanting of the base region may include directing the dopant toward a semiconductor material through a window defined by sidewalls formed in a conditioned masking material over the semiconductor material. The resulting base and emitter regions may be substantially symmetrical about a central boundary plane. In relation to the symmetry, one thyristor may be operable with a minimum holding current within about 10 percent of that for the other thyristor in the mirror-image pair.
Abstract:
A semiconductor device having a thyristor-based device and a pass device exhibits characteristics that may include, for example, resistance to short channel effects that occur when conventional MOSFET devices are scaled smaller in connection with advancing technology. According to an example embodiment of the present invention, the semiconductor device includes a pass device having a channel in a fin portion over a semiconductor substrate, and a thyristor device coupled to the pass device. The fin has a top portion and a side portion and extends over the semiconductor substrate. The pass device includes source/drain regions separated by the channel and a gate facing and capacitively coupled to the side portion of the fin that includes the channel. The thyristor device includes anode and cathode end portions, each end portion having base and emitter regions, where one of the emitter regions is coupled to one of the source/drain regions of the pass device. The gate of the pass device is further adapted to switch the pass device between a blocking state and a conducting state via the capacitive coupling and form a conductive path between the source/drain regions. A control port is capacitively coupled to the base region of the end portion of the thyristor that is coupled to the source/drain region of the pass gate and is adapted to facilitate switching of the thyristor between blocking and conducting states.
Abstract:
A reference cell produces a reference current that is about half of the current produced by a memory cell. The reference cell is essentially the same as the memory cell with an additional current reduction device that can be a transistor. Adjusting a reference voltage applied to the transistor allows the reference current to be varied. A control circuit to produce the reference voltage includes dedicated memory and reference cells and a feedback circuit that compares the two cells' currents. The feedback circuit applies the reference voltage to the reference cell of the control circuit and adjusts the reference voltage until the current from the reference cell is about half of the current from the memory cell. The reference voltage is then applied to other reference cells in a memory array.
Abstract:
A semiconductor device is formed including a substrate having an upper surface, a thyristor region in the substrate and a control port adapted for capacitively coupling to at least a portion of the thyristor region via a dielectric material. According to an example embodiment of the present invention, a trench is formed in the substrate and subsequently filled with materials including dielectric material and a control port. The control port is adapted for capacitively coupling to the thyristor via the dielectric material for controlling current flow in the thyristor (e.g., for causing an outflow of minority carriers from a portion of the thyristor for switching the thyristor from conducting state to a blocking state). A portion of the substrate adjacent to the upper surface is implanted with a species of ions, and the dielectric material via which the control port capacitively couples to the thyristor does not include the species of ions. In one implementation, a filled portion of the trench over the control port inhibits ions from implanting the dielectric material. In another implementation, the control port is formed recessed, relative to the upper surface of the substrate, such that the ion implant depth of the region adjacent to the upper surface is shallower than the recessed control port. With this approach, current control in the thyristor is effected using an arrangement that inhibits ion implantation damage to dielectric material used for controlling current in the thyristor.
Abstract:
In a thyristor based memory cell, one end of a reversed-biased diode is connected to the cathode of the thyristor. During standby, the second end of the diode is biased at a voltage that is higher than that at the cathode of the thyristor. During restore operation, the second end is pulled down to zero or even a negative value. If the cell is storing a “1,” the voltage at the thyristor cathode can be approximately 0.6 volt at the time of the pull down. The large forward-bias across the diode pulls down the thryistor cathode. This causes the thyristor to be restored. If the cell is storing a “0,” the voltage at the thyristor cathode can be approximately zero volt. The small or zero forward-bias across the diode is unable to disturb the “0” state. As a result, the memory cell is restored to its original state.
Abstract:
Switching times of a thyristor-based semiconductor device are improved by enhancing carrier drainage from a buried thyristor-emitter region. According to an example embodiment of the present invention, a conductive contact extends to a doped well region buried in a substrate and is adapted to drain carriers therefrom. The device includes a thyristor body having at least one doped emitter region buried in the doped well region. A conductive thyristor control port is adapted to capacitively couple to the thyristor body and to control current flow therein. With this approach, the thyristor can be rapidly switched between resistance states, which has been found to be particularly useful in high-speed data latching implementations including but not limited to memory cell applications.
Abstract:
A thyristor-based semiconductor device exhibits a relatively increased base-emitter capacitance. According to an example embodiment of the present invention, a base region and an adjacent emitter region of a thyristor are doped such that the emitter region has a lightly-doped portion having a light dopant concentration, relative to the base region. In one embodiment, the thyristor is implemented in a memory circuit, wherein the emitter region is coupled to a reference voltage line and a control port is arranged for capacitively coupling to the thyristor for controlling current flow therein. In another implementation, the thyristor is formed on a buried insulator layer of a silicon-on-insulator (SOI) structure. With these approaches, current flow in the thyristor, e.g., for data storage therein, can be tightly controlled.
Abstract:
A semiconductor device includes a thyristor designed to reduce or eliminate manufacturing and operational difficulties commonly experienced in the formation and operation of NDR devices. According to one example embodiment of the present invention, the semiconductor substrate is trenched adjacent a doped or dopable substrate region, which is formed to include at least two vertically-adjacent thyristor regions of different polarity. A capacitively-coupled control port for the thyristor is coupled to at least one of the thyristor regions. The trench also includes a dielectric material for electrically insulating the vertically-adjacent thyristor regions. The thyristor is electrically connected to other circuitry in the device, such as a transistor, and used to form a device, such as a memory cell.
Abstract:
A thyristor-based semiconductor device exhibits a relatively increased base-emitter capacitance. According to an example embodiment of the present invention, a base region and an adjacent emitter region of a thyristor are doped such that the emitter region has a lightly-doped portion having a light dopant concentration, relative to the base region. In one embodiment, the thyristor is implemented in a memory circuit, wherein the emitter region is coupled to a reference voltage line and a control port is arranged for capacitively coupling to the thyristor for controlling current flow therein. In another implementation, the thyristor is formed on a buried insulator layer of a silicon-on-insulator (SOI) structure. With these approaches, current flow in the thyristor, e.g., for data storage therein, can be tightly controlled.
Abstract:
A semiconductor device having a thyristor-based memory device exhibits improved stability under adverse operating conditions related to temperature, noise, electrical disturbances and light. In one particular example embodiment of the present invention, a semiconductor device includes a thyristor-based memory device that uses a shunt between a base and emitter region in a thyristor that effects a leakage current in the thyristor. The thyristor includes a capacitively coupled control port and anode and cathode end portions. Each of the end portions has an emitter region and an adjacent base region, and the current shunt is located between the emitter and base region of one of the end portions of the thyristor. The current shunt is configured and arranged to shunt low-level current between the emitter region and the adjacent base region, and in doing so improves the ability of the device to operate under adverse conditions that would, absent the shunt, result in inadvertent turn on, while keeping the standby current of the memory device to an acceptably low level.