Abstract:
A non-volatile memory device and a method for manufacturing the same are disclosed. A non-volatile memory device comprises a semiconductor substrate having active areas which extend in a first direction and are repeatedly arranged in a second direction orthogonal to the first direction, a plurality of word lines formed on the semiconductor substrate which extending in the second direction while being repeatedly arranged in the first direction, string select lines adjacent to a first word line and extending in the second direction, ground select lines adjacent to a last word line and extending in the second direction, a first insulating interlayer formed on the resultant structure and comprising a first opening exposing the active area between the ground select lines and a second opening exposing the active area between the string select lines, a bit line contact pad formed in the second opening. A sidewall of the contact pad comprises a negative slope in the first direction and a positive slope in the second direction. A hard mask layer pattern, having the same pattern size as the active area, is formed on the contact pad and the first insulating interlayer. A second insulating interlayer is formed on the hard mask layer pattern and the first insulating interlayer. The second insulating interlayer has a bit line contact hole on the contact pad and thus the process margin is sufficiently achieved.
Abstract:
Disclosed herein is a touch panel including: a first transparent substrate partitioned into an active area and a bezel area provided in edges of the active area; a mark formed so as to protrude on the bezel area; and a second transparent substrate coupled to the first transparent substrate so that at least one corner thereof corresponds to the mark.
Abstract:
A method for manufacturing a molybdenum sputtering target for a back electrode of a CIGS solar cell is provided to minimize thermal activating reaction by employing an electric discharge plasma sintering process. The method for manufacturing a molybdenum sputtering target for a back electrode of a CIGS solar cell comprises the steps of: charging molybdenum powder in a mold of graphite material, mounting the mold in a chamber of an electric discharge sintering apparatus, making a vacuum in the chamber, forming the molybdenum powder to the final target temperature while maintaining constant pressure on the molybdenum powder, heating the molybdenum powder in a predetermined heating pattern when reaching the final target temperature, maintaining the final target temperature for 1 to 10 minutes, and cooling the inside of the chamber while maintaining a constant pressure.
Abstract:
A compound for an organic optoelectronic device, an organic light emitting diode, and a display device, the compound including moieties represented by the following Chemical Formula 1; Chemical Formula 4; and one of Chemical Formulae 2 and 3;
Abstract:
A method and apparatus for generating discriminant functions for distinguishing obscene videos by using visual features of video data, and a method and apparatus for determining whether videos are obscene by using the generated discriminant functions, are provided. The method of generating discriminant functions includes: creating a first frame set by extracting a predetermined number of frames for each video data unit from a group of video data classified as obscene or non-obscene, and creating a second frame set by selecting the frames; generating a frame based discriminant function by extracting visual features of frames of the second frame set, and then generating a first discriminant value by determining whether each frame of the first frame set contains obscene video data; generating a group frame based discriminant function by extracting visual features of a group of frames of the first frame set, and then generating a second discriminant value by determining whether the frames of the group contain obscene video data; and generating a synthetic discriminant function by using the first and second discriminant values as a representative value of the video data. Accordingly, obscene video data stored in a computer system can be automatically and accurately distinguished.
Abstract:
Disclosed is a method for manufacturing a thin film transistor LCD device, in which a counter and a gate bus line are made in a single photolithography process, and a channel of a thin film transistor, a source electrode, a drain electrode, ohmic contacts for the source and drain electrodes are made in a single photolithography process. The method involves the steps of forming a first photoresist layer on said deposited metal layer for the gate bus line; exposing said first photoresist layer to a scanning light, so that the portion of the first photoresist layer disposed over a counter electrode region for forming said counter electrode may be partially lightened; patterning said first photoresist layer so that an area of the metal layer for the gate bus line lying under the partially lightened portion of the first photoresist layer may not be exposed; patterning said metal layer for the gate bus line by using said patterned first photoresist layer as a barrier layer so that said counter electrode region and a gate bus line region may be defined; patterning said transparent conductive layer for the counter electrode by using said patterned metal layer as a barrier layer so that said counter electrode may be formed; patterning said metal layer for the gate bus line by using said patterned first photoresist layer as a barrier layer so that said gate bus line may be formed.
Abstract:
A vertical memory device includes a substrate, a plurality of channels on the substrate and extending in a first direction that is vertical to a top surface of the substrate, a plurality of gate lines stacked on top of each other on the substrate, a plurality of wiring over the gate lines and electrically connected to the gate lines, and an identification pattern on the substrate at the same level as a level of at least one of the wirings. The gate lines surround the channels. The gate lines are spaced apart from each other along the first direction.
Abstract:
A compound for an organic optoelectronic device, an organic light emitting diode, and a display device, the compound including moieties represented by the following Chemical Formula 1; Chemical Formula 4; and one of Chemical Formulae 2 and 3;
Abstract:
A network correction security system. The network correction security system connected between a network node and a security-related external system, detects attacks on the network node, corrects weak parts of the performance of the network node, collects information for improving the security performance of the network node from a security-related external system, analyzes the information, monitors principal resources of the network node to detect a fault, and removes the fault according to a measure corresponding to a grade of the fault. The network correction security system carries out a recovery process when the fault has not been corrected, and recovers the functions of the network node according to a recovery mechanism when the fault has not been removed after the recovery process.