摘要:
A non-volatile memory device and a method for manufacturing the same are disclosed. A non-volatile memory device comprises a semiconductor substrate having active areas which extend in a first direction and are repeatedly arranged in a second direction orthogonal to the first direction, a plurality of word lines formed on the semiconductor substrate which extending in the second direction while being repeatedly arranged in the first direction, string select lines adjacent to a first word line and extending in the second direction, ground select lines adjacent to a last word line and extending in the second direction, a first insulating interlayer formed on the resultant structure and comprising a first opening exposing the active area between the ground select lines and a second opening exposing the active area between the string select lines, a bit line contact pad formed in the second opening. A sidewall of the contact pad comprises a negative slope in the first direction and a positive slope in the second direction. A hard mask layer pattern, having the same pattern size as the active area, is formed on the contact pad and the first insulating interlayer. A second insulating interlayer is formed on the hard mask layer pattern and the first insulating interlayer. The second insulating interlayer has a bit line contact hole on the contact pad and thus the process margin is sufficiently achieved.
摘要:
A non-volatile memory device and a method for manufacturing the same are disclosed. A non-volatile memory device comprises a semiconductor substrate having active areas which extend in a first direction and are repeatedly arranged in a second direction orthogonal to the first direction, a plurality of word lines formed on the semiconductor substrate which extending in the second direction while being repeatedly arranged in the first direction, string select lines adjacent to a first word line and extending in the second direction, ground select lines adjacent to a last word line and extending in the second direction, a first insulating interlayer formed on the resultant structure and comprising a first opening exposing the active area between the ground select lines and a second opening exposing the active area between the string select lines, a bit line contact pad formed in the second opening. A sidewall of the contact pad comprises a negative slope in the first direction and a positive slope in the second direction. A hard mask layer pattern, having the same pattern size as the active area, is formed on the contact pad and the first insulating interlayer. A second insulating interlayer is formed on the hard mask layer pattern and the first insulating interlayer. The second insulating interlayer has a bit line contact hole on the contact pad and thus the process margin is sufficiently achieved.
摘要:
The present disclosure demonstrates that cholesterol-free discoidal reconstituted HDL (R-HDL), phosphatidyl-choline (PC) and PC liposomes effectively released cholesterol from ICP. Native HDL and its apolipoproteins were not able to release cholesterol from ICP. The release of ICP cholesterol by R-HDL was dose-dependent and accompanied by the transfer of >8× more PC in the reverse direction (i.e., from R-HDL to ICP), resulting in a marked enrichment of ICP with PC. The enrichment of ICP with PC resulted in the dissolution of cholesterol crystals on ICP and allowed the removal of ICP cholesterol by apo HDL and plasma. The present disclosure provides a method of treatment for removal of cholesterol from ICP in vivo and compositions for use in such method of treatment. Such methods may be used in the treatment and/or prevention of atherosclerosis, coronary artery disease, and related disease states and conditions.
摘要:
Provided are a nonvolatile memory device and a method of manufacturing the same. A floating gate electrode of the nonvolatile memory device may have a cross-shaped section as taken along a direction extending along a control gate electrode. The floating gate electrode may have an inverse T-shaped section as taken along a direction extending along an active region perpendicular to the control gate electrode. The floating gate electrode may include a lower gate pattern, a middle gate pattern and an upper gate pattern sequentially disposed on a gate insulation layer, in which the middle gate pattern is larger in width than the lower gate pattern and the upper gate pattern. A boundary between the middle gate pattern and the upper gate pattern may have a rounded corner.
摘要:
A method of fabricating a nonvolatile memory device includes providing an intermediate structure in which a floating gate and an isolation film are disposed adjacent to each other on a semiconductor substrate and a gate insulating film is disposed on the floating gate and the isolation film, forming a conductive film on the gate insulating film, and annealing the conductive film so that part of the conductive film on an upper portion of the floating gate flows down onto a lower portion of the floating gate and an upper portion of the isolation film.
摘要:
A non-volatile memory device prevents charge spreading. The non-volatile memory device includes an isolation trench in a semiconductor substrate, an isolation layer partially filling the isolation trench between first and second fins defined by the isolation trench, a control gate electrode crossing the first and second fins, a first charge trap pattern between the first fin and the control gate electrode, and a second charge trap pattern between the second fin and the control gate electrode.
摘要:
A non-volatile memory device prevents charge spreading. The non-volatile memory device includes an isolation trench in a semiconductor substrate, an isolation layer partially filling the isolation trench between first and second fins defined by the isolation trench, a control gate electrode crossing the first and second fins, a first charge trap pattern between the first fin and the control gate electrode, and a second charge trap pattern between the second fin and the control gate electrode.
摘要:
In a method of manufacturing a semiconductor device, a first substrate and a second substrate, which include a plurality of memory cells and selection transistors, respectively, are provided. A first insulating interlayer and a second insulating interlayer are formed on the first substrate and the second substrate, respectively, to cover the memory cells and the selection transistors. A lower surface of the second substrate is partially removed to reduce a thickness of the second substrate. The lower surface of the second substrate is attached to the first insulating interlayer. Plugs are formed through the second insulating interlayer, the second substrate and the first insulating interlayer to electrically connect the selection transistors in the first substrate and the second substrate to the plugs. Thus, impurity ions in the first substrate will not diffuse during a thermal treatment process.
摘要:
In the method of manufacturing a dual gate oxide layer of a semiconductor device, which has first and second active regions operating at mutually different voltages on a semiconductor substrate, the first and second active regions having a device isolation layer of STI (Shallow Trench Isolation) structure; the method of manufacturing the dual gate insulation layer includes, forming the device isolation layer so that an uppermost part thereof is positioned lower than an upper surface of the first and second active regions, before forming a gate insulation layer corresponding to each of the first and second active regions. Whereby, it is be effective till a portion of trench sidewall utilized as the active region, to increase a cell current of the active region and to prevent a stringer caused by a stepped coverage between the active region and a field region and a dent caused on a boundary face between the active region and the field region.
摘要:
A semiconductor device and a method of forming the semiconductor device are disclosed. The semiconductor device includes: a semiconductor substrate; a patterned floating gate formed on the semiconductor substrate, the patterned floating gate having upper and side parts and corners; and a dielectric layer containing a first oxide layer, a nitride layer and a second oxide layer deposited over the semiconductor substrate and the floating gate. The ratio of the thickness of the first oxide layer in the upper and side parts of the patterned floating gate to the thickness of the first oxide layer in the corners of the patterned floating gate does not exceed 1.4. The semiconductor device has an improved coupling coefficient, and reduced leakage current.