Abstract:
Disclosed are the methods and compositions for the reduction of intestinal gas/flatulence. Specifically a method for reducing flatulence using a composition containing probiotic bacteria Bacillus coagulans MTCC 5856 is disclosed. More specifically, the invention discloses a method for inhibiting the growth of microorganisms that facilitate the production of intestinal gas, using a composition containing probiotic bacteria Bacillus coagulans MTCC 5856.
Abstract:
Disclosed are compositions containing at least 10% w/w or above of 1-O-galloyl-β-D-glucose (β-glucogallin) which additionally comprising of about 10% w/w to greater than 60% w/w total mucic acid gallates including mucic acid 1,4-lactone 5-O-gallate, mucic acid 2-O-gallate, mucic acid 6-Methyl ester 2-O-gallate, mucic acid 1-Methyl ester 2-O-gallate and ellagic acid, and a probiotic bacteria Bacillus coagulans MTCC 5856, individually or in combination for inhibiting the growth and managing infections of Helicobacter pylori.
Abstract:
The present invention disclosed herein describes (i) the growth promotional activity of natural plant based fibres on Bacillus coagulans MTCC 5856; (ii) the combination of natural plant based fibres and Bacillus coagulans MTCC 5856 to inhibit Gram Negative pathogenic bacteria and (iii) the production of short chain fatty acids (SCFA) by Bacillus coagulans MTCC 5856 using plant based natural fibres.
Abstract:
Process of inhibiting microbial biofilm formation using extracellular metabolite composition from Bacillus coagulans MTCC 5856 and composition comprising from about 61% w/w of thymol, about 38% w/w of monolaurin and about 1% w/w of magnolol obtained from supercritical fluid extracts of Magnolia officinalis is described.
Abstract:
Disclosed is a method for producing partially purified extracellular metabolite preparation from the probiotic bacterial strain Bacillus coagulans SBC-37 (Deposited in the Microbial Type Culture Collection and Gene Bank as strain number MTCC 5856) exhibiting 99% genetic homology with the known bacterial strains Bacillus coagulans ATCC 31284, Bacillus coagulans NBRC 3887 and Bacillus coagulans ATCC 7050. Also disclosed is the anti-microbial profile of said extracellular metabolite preparation against a panel of microbial pathogens, including synergistic anti-microbial effects of preparation when combined with a synergistic preservative blend comprising from about 61% w/w of thymol, about 38% of monolaurin and about 1% w/w of magnolol obtained from supercritical fluid extracts of Magnolia officinalis. The extracellular metabolite preparation alone or the combination of said extracellular metabolite preparation and preservative blend also inhibits microbial biofilm formation in a synergistic manner.
Abstract:
Disclosed is a method for producing partially purified extracellular metabolite preparation from the probiotic bacterial strain Bacillus coagulans SBC-37 (Deposited in the Microbial Type Culture Collection and Gene Bank as strain number MTCC 5856) exhibiting 99% genetic homology with the known bacterial strains Bacillus coagulans ATCC 31284, Bacillus coagulans NBRC 3887 and Bacillus coagulans ATCC 7050. Also disclosed is the anti-microbial profile of said extracellular metabolite preparation against a panel of microbial pathogens, including synergistic anti-microbial effects of preparation when combined with a synergistic preservative blend comprising from about 61% w/w of thymol, about 38% of monolaurin and about 1% w/w of magnolol obtained from supercritical fluid extracts of Magnolia officinalis. The extracellular metabolite preparation alone or the combination of said extracellular metabolite preparation and preservative blend also inhibits microbial biofilm formation in a synergistic manner.
Abstract:
The present invention discloses a method of isolating secondary metabolites, specifically arjunolic acid, from the calli and/or the suspension cultures derived from the pluripotent cambium tissue of Terminalia arjuna. The invention also discloses a method of inducing callus, establishing and maintaining suspension cultures of callus derived from the cambium of Terminalia arjuna for the isolation of secondary metabolites.
Abstract:
Disclosed is the use of partially purified extracellular metabolite isolated from Bacillus coagulans MTCC 5856 to prevent skin aging. More specifically the invention discloses the anti-collagenase, anti-elastase, anti-glycation activity and enhancement of TGF-β, epidermal growth factor and hyaluronic acid expression in human dermal fibroblasts, of extracellular metabolites isolated from Bacillus coagulans MTCC 5856.
Abstract:
The present invention discloses a novel endophytic fungi, Ovatospora brasiliensis MTCC 25236 for the bioconversion of curcuminoids to Calebin-A and a method for its isolation from the rhizomes of Curcuma sp. The invention also discloses a method for the bioconversion of curcuminoids to Calebin-A using an endophytic fungi Ovatospora brasiliensis MTCC 25236 and bacterial species, Acinetobacter johnsonii and Pseudomonas putida.