Abstract:
A system for processing an image comprises a three-dimensional camera that captures an image of a dairy livestock and a processor communicatively coupled to the three-dimensional camera. The processor accesses a first pixel having a first depth location, a second pixel having a second depth location, and a third pixel having a third depth location. The processor determines that the second pixel is an outlier among the first pixel and the third pixel based upon the first depth location, the second depth location, and the third depth location, and discards the second pixel from the image based at least in part upon the determination.
Abstract:
This invention is related to a double grab, its rinsing cup and milking machine provided therewith, and the method for automatically applying teat cups to the teats of an udder of an animal to be milked. The double grab according to the invention includes: —a first housing part provided with a first magnet designed to hold a first teat cup; —a second housing part, installed substantially in a horizontal plane next to the first housing part, provided with a second magnet designed to hold a second teat cup; —whereby each housing part is provided with separate pivoting means that can be activated and is designed to make the related housing part pivot around a pivoting axis which in use, extends substantially in a horizontal direction, substantially in a widthwise direction of the arm.
Abstract:
A method comprises receiving a flow of milk at an inlet of a manifold. The inlet comprises a first end coupled to a hose that receives a flow of milk from a teat cup and a second end terminating in a chamber of the manifold. The manifold comprises one or more other inlets and a plurality of outlets. The plurality of outlets includes one or more milk collector outlets and one or more drain outlets. The method proceeds by causing the flow of milk to be directed to a corresponding milk collector outlet by causing a shut-off valve corresponding to the inlet to open, and by causing a drain valve corresponding to the inlet to close. The method concludes by causing the flow of milk to be directed to a corresponding drain outlet by causing the drain valve corresponding to the inlet to open.
Abstract:
A heating and cooling apparatus for hazardous environments is disclosed. The apparatus has a housing having an air inlet and an air outlet. The apparatus further comprises a motor having a shaft and an electrical component and a metallic impeller having an impeller inlet and blades. The impeller inlet faces the air inlet of the housing and the impeller is coupled to the shaft of the motor. The apparatus also has an air filter removably positioned at the air inlet of the housing. A coil is removably positioned inside the housing between the air outlet and the impeller blades. A valve is also coupled to the coil, the valve being operable to regulate the temperature of the coil by controlling the flow of fluid into the coil.
Abstract:
A system includes a robotic arm on which at least one camera is attached. It further includes a memory and a controller communicatively coupled to the memory. The memory stores historical information associated with a dairy livestock. The historical information include a previously-determined location of a teat of the dairy livestock. The controller moves the camera on the robotic arm toward the previously-determined location of the teat. The camera generates an image of the teat of the dairy livestock from a position to which it is moved, and the controller determines a current location of the teat of the dairy livestock based at least in part on the image.
Abstract:
A system comprises a milking box, a robotic attacher, a sensor, and a controller. The milking box has a stall to accommodate a dairy livestock. The stall comprises a first exit gate on a first side of the stall leading to a first sorting region and a second exit gate on a second side of the stall leading to a second sorting region. The robotic attacher extends from the rear between the hind legs of the dairy livestock. The sensor identifies the dairy livestock within the milking box stall. The controller selects and opens the first exit gate or the second exit gate based at least in part upon the identity of the dairy livestock in order to direct the first dairy livestock into either the first sorting region or the second sorting region.
Abstract:
A robotic attacher comprises a main arm, a supplemental arm coupled to the main arm, and a gripping portion coupled to the supplemental arm. The gripping portion comprises at least one nozzle and is operable to rotate such that during a first time, the nozzle is positioned away from the top of the gripping portion, and during a second time, the nozzle is positioned generally on the top of the gripping portion.
Abstract:
An apparatus comprises a milking box having a stall to accommodate a dairy livestock and a robotic attacher. The robotic attacher comprises a main arm that is suspended vertically from a rail of the milking box, and a supplemental arm that is coupled to and extends horizontally from the main arm along a longitudinal axis. The supplemental arm comprises a pivot assembly that pivots a gripping portion around a vertical axis that is substantially parallel to the main arm of the robotic attacher, in a direction transverse to the longitudinal direction of the supplemental arm.
Abstract:
An air mover comprising a housing with a top portion is disclosed. A mounting bracket is recessed into the housing through the top portion of the housing. The mounting bracket comprises a plurality of top chords intersecting at a first portion of an inner web and a plurality of bottom chords intersecting at a second portion of the inner web. The mounting bracket also has a base plate coupled to the plurality of bottom chords. A motor is coupled to the base plate of the mounting bracket. An impeller is coupled to the motor. The air mover further comprises a housing cover that has an inlet ring positioned on the top portion of the housing. The housing cover is coupled to the mounting bracket via the mounting flanges and a portion of the inlet ring protrudes into the impeller inlet inside the housing.
Abstract:
The present invention relates to a cleaning device (4) for cleaning and pretreating teats of an animal for milking, milking machine (2) provided therewith and method therefor. The cleaning device according to the invention comprises: • a frame (52) provided with an arm (6); • a cleaning head arranged on the arm and provided with a rotatable holder (12) on which one or more rotatable cleaning elements (14) are provided; and • moving means (48, 50, 56) connected to the frame for displacing the cleaning head relative to the teats such that the teats are cleanable using the cleaning elements.