Abstract:
An in-line fiber-optic temperature sensor is disclosed. In an implementation, the in-line fiber-optic temperature sensor includes an optically transmissive fiber, a reflector, a microstructured fiber defining a channel therein for receiving a fluid, and a Fabry-Perot cavity in fluid communication with the microstructured fiber. The microstructured fiber can be retained between the optically transmissive fiber and the reflector. The Fabry-Perot cavity defined by a material and configured to receive a gas having an index of refraction that changes in a known way with temperature and pressure changes in fluid communication with the channel of the microstructured fiber. The in-line fiber-optic temperature sensor also includes a chamber defined between the optically transmissive fiber and the microstructured fiber for connecting in fluid communication with a vacuum/pressure source for changing pressure. The in-line fiber-optic temperature sensor also includes a sensor for determining an optical interferometric reflection spectrum associated with the Fabry-Perot cavity.
Abstract:
This disclosure concerns nucleic acid molecules and methods of use thereof for control of hemipteran pests through RNA interference-mediated inhibition of target coding and transcribed non-coding sequences in hemipteran pests. The disclosure also concerns methods for making transgenic plants that express nucleic acid molecules useful for the control of hemipteran pests, and the plant cells and plants obtained thereby.
Abstract:
This disclosure concerns nucleic acid molecules and methods of use thereof for control of coleopteran and/or hemipteran pests through RNA interference-mediated inhibition of target coding and transcribed non-coding sequences in coleopteran and/or hemipteran pests. The disclosure also concerns methods for making transgenic plants that express nucleic acid molecules useful for the control of coleopteran and/or hemipteran pests, and the plant cells and plants obtained thereby.
Abstract:
Molecular adjuvants are disclosed comprising an antigen presenting cell-targeting ligand linked to an immunogen, e.g. tumor associated antigens, bacterial or viral antigens. The ligand and the immunogen are linked via a cleavable linker such as a protease-sensitive oligopeptide, to facilitate processing of the adjuvant by the antigen presenting cell. Methods are disclosed for delivery of these molecular adjuvants to patients, resulting in the transduction of activating signals to the targeted antigen presenting cell, thereby enhancing the immune response to the co-delivered immunogen.
Abstract:
Apparatuses for guiding an endotracheal tube during intubation and associated methods of their use; the apparatuses formed to contain a plastic element able to hold deformations so as to conform the apparatus to the shape of a patient's endotracheal airway. The plastic element has sufficient give so as to minimize traumatic engagement with the inner surface of the airway lumen. Methods for using the apparatuses exploit indirect visualization where the person performing the intubation can shape the apparatuses so as to place the distal end into the field of view of the indirect visualization instrument even with minimal alignment of the patient's airway.
Abstract:
Plant MSH1 polynucleotides and polypeptides are described. Also described are methods for the use and modulation of such MSH1 polynucleotides and polypeptides.
Abstract:
The present invention relates to sulfur dye protection systems and compositions and methods employing same, as well as processes for making sulfur dyes, especially bleach stable sulfur dyes, processes for dying textiles with sulfur dyes and textiles dyed by such processes. More particularly, the present invention relates to modifying existing dyes and/or making newly formed sulfur dyes. Even more particularly, the present invention relates to materials that can chemically or physically interact with sulfur dyes to protect the sulfur dyes from oxidation by oxidizing agents, such as bleaching agents.
Abstract:
The invention relates to a new and improved pharmaceutical composition and method for delivery of therapeutic agents. The methods and composition of the invention can be used with several therapeutic agents and can achieve site specific delivery of a therapeutic or diagnostic substance. This can allow for lower doses and for improved efficacy with drugs which traditionally reach targeted sites and can result in improved utility for agents such as oligonucleotides and polynucleotides which are plagued with problems with biodistribution.
Abstract:
Molecular adjuvants are disclosed comprising an antigen presenting cell-targeting ligand linked to an immunogen. In particular, these molecular adjuvants are employed in compositions designed to deliver the specific immunogen to antigen presenting cells and simultaneously deliver signals to those cells that produce the desired immune response. Methods are also disclosed for delivery of these molecular adjuvants to patients, resulting in the transduction of activating signals to the targeted antigen presenting cell, thereby enhancing the immune response to the co-delivered immunogen.
Abstract:
Standalone and cluster-based servers, including Web servers, control the amount of data processed concurrently by such servers to thereby control server operating performance. Each server preferably includes a dispatcher for receiving data requests from clients, and at least one back-end server for processing such requests. The dispatcher preferably maintains a persistent connection, or a set of persistent connections, with the back-end server, and forwards the data requests received from clients to the back-end server over the persistent connections. Thus, instead of maintaining a one-to-one mapping of back-end connections to front-end connections as is done in the prior art, the back-end connections can be maintained by the dispatcher and used repeatedly for sending data between the dispatcher and the back-end server. In this manner, back-end connection overhead is markedly reduced.