Abstract:
Disclosed is a low-cost high-resolution compact accelerometer which utilizes multiple self-mixing optical interferometers. The device is also a micro-opto-electro-mechanical systems (MOEMS) sensor. The interferometers are used to detect acceleration as well as monitor the wavelength, temperature, and refractive index and perform differential measurements. In addition, photodetectors are employed to monitor the input optical power.
Abstract:
An in-line fiber-optic temperature sensor is disclosed. In an implementation, the in-line fiber-optic temperature sensor includes an optically transmissive fiber, a reflector, a microstructured fiber defining a channel therein for receiving a fluid, and a Fabry-Perot cavity in fluid communication with the microstructured fiber. The microstructured fiber can be retained between the optically transmissive fiber and the reflector. The Fabry-Perot cavity defined by a material and configured to receive a gas having an index of refraction that changes in a known way with temperature and pressure changes in fluid communication with the channel of the microstructured fiber. The in-line fiber-optic temperature sensor also includes a chamber defined between the optically transmissive fiber and the microstructured fiber for connecting in fluid communication with a vacuum/pressure source for changing pressure. The in-line fiber-optic temperature sensor also includes a sensor for determining an optical interferometric reflection spectrum associated with the Fabry-Perot cavity.
Abstract:
A digital bolometer architecture provides dynamic control of a simultaneous integration time for all pixels, with a temporal response that is more uniform than conventional bolometers and lacks frame cross-talk from decay tails, and which supports sub-frame measurement for on readout computational imaging. This is accomplished by replacing resistive pixel temperature sensing with continuous optical interferometric measurement and subsequent signal accumulation. Balanced reference sensors allow rejection of temperature differences across the thermal sink. The thermal time constant of the pixels is substantially reduced and the lost SNR is recovered by integration of the measured signals, using a programmable integration time.
Abstract:
A digital bolometer architecture provides dynamic control of a simultaneous integration time for all pixels, with a temporal response that is more uniform than conventional bolometers and lacks frame cross-talk from decay tails, and which supports sub-frame measurement for on readout computational imaging. This is accomplished by replacing resistive pixel temperature sensing with continuous optical interferometric measurement and subsequent signal accumulation. Balanced reference sensors allow rejection of temperature differences across the thermal sink. The thermal time constant of the pixels is substantially reduced and the lost SNR is recovered by integration of the measured signals, using a programmable integration time.
Abstract:
In a heat-flux measuring method for measuring an ion flux of plasma generated in a substrate processing chamber using a heat flux, a heat-flux measuring member is exposed to the plasma and irradiatated with a low coherent light. The heat-flux measuring member has a three-layered structure in which a first length and a second length of optical paths of the low-coherent light in the first layer and the third layer are measured using optical interference of reflected lights from the heat-flux measuring member. Current temperatures of the first layer and the third layer are obtained based on the measured first length, the measured second length, and data representing thermal-optical path length relationship. A heat flux flowing through the heat-flux measuring member is calculated based on the obtained temperatures, and a thickness and a thermal conductivity of the second layer.
Abstract:
Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a “structured” substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a “contrast-compensated” mixture of positive and negative dichroic dyes.
Abstract:
The invention concerns a tandem interferometer for temperature sensing. The low coherence interferometry (LCI) system comprises a polarization-based sensing interferometer comprising a birefringent crystal having a sensor temperature sensitivity and a birefringence dispersion, and a readout interferometer being either a Fizeau interferometer using an optical wedge or a polarization interferometer using a birefringent wedge. In one embodiment of the invention, the birefringent crystal has dispersion properties similar to that of the birefringent wedge or that of the optical wedge of the readout interferometer. The present invention also provides a signal processing method for correcting the dispersion effect and for noise filtering in LCI-based optical sensors of the tandem interferometer arrangement.
Abstract:
An optical fiber sensor is provided for displacement measurement, pressure measurement, refractive index measurement, bio/chemical detection, and/or microscopy.
Abstract:
A method and apparatus for measurement of at least one of brightness, flow velocity and temperature of radiant media are provided. A substantially collimated beam of light having a selected frequency is directed to a linear polariser. The linearly polarised output is directed to an electro-optically active birefringent crystal to separate the output into two characteristic waves and to introduce a first fixed phase delay between the characteristic waves. The birefringent crystal is selectively electro-optically modulated to introduce a second variable phase delay between the characteristic waves and the characteristic waves are combined to interfere prior to detection.
Abstract:
A method for imaging a quantity of gas present in the atmosphere of a selected area. The method comprises the steps of directing background infra-red radiation from the selected area into an interferometer; imaging the infra-red radiation emerging from the interferometer onto at least one infra-red detector: obtaining a plurality of Fouriertransform infra-red spectra in the 8-14 micrometer spectral region, each spectrum coitesponding to infra-red radiation collected from a different portion of the selected area; and displaying in a suitable form an infra-red image, the infra-red image comprising the plurality of infra-red spectra, or quantities derived therefrom. The temperature of the quantity of gas or ambient temperature is measured, the temperature of the background is measured, and the difference between the two measured temperatures is used to derive gas column densities from the infra-red spectra.