Abstract:
A general methodology for the development of sensitive and selective sensors that can achieve a low cost detection of glucose without using enzymes is disclosed. The method uses carbon nanofiber (CNF) array electrodes for the electrochemical detection of glucose. CNFs grown by plasma enhanced chemical vapor deposition (PECVD) with diameters ranging from 13-160 nm and a height of approximately one micrometer are preferred. The CNFs have a sensitivity of 2.7 μA/mM cm2 and detection limit of 2 mM. Also provided are methods of preparing the CNF sensors and kit components. Methods of using such CNF sensors for detecting target agents, particularly glucose, are also provided.
Abstract:
This invention relates to cost-effective methods for synthesizing metallic nanoparticles in high yield using non-dendrimeric branched polymeric templates, such as branched polyethyleneimine. This invention also provides a high-throughput apparatus for synthesizing metallic nanoparticles under conditions that produce less waste than conventional nanoparticle synthesis methods. Also provided are metallic nanoparticles and multi-metallic nanoparticle compositions made by methods and high-throughput apparatus of the invention.
Abstract:
A water filtration system is provided that comprises a combination of two components: silver nanoparticles immobilized on a porous carbon solid matrix and calcium carbonate silver nanoparticles. The silver nanoparticles immobilized on the porous carbon solid matrix are prepared in a one-step wet ball milling process that does not use an environmentally hazardous reducing agent or an organic stabilizer. The calcium carbonate in the calcium carbonate silver nanoparticles is preferably isolated from egg shells. The two filter components can be present in any ratio but an approximate 50:50 ratio is preferred. Also provided is an in situ method of preparing silver nanoparticles on active charcoal. Powdered activated charcoal and silver nitrate are mixed together in a mixture of ethanol and water to form a charcoal-silver nitrate solution which is then subjected to ball milling in the presence of polypropylene to produce silver nanoparticles on active charcoal.
Abstract:
Structured films containing multi-walled carbon nanotubes (“MWCNTs”) have enhanced mechanical performance in terms of strength, fracture resistance, and creep recovery of polyimide (“PI”) films. Preferably, the loadings of MWCNTs can be in the range of 0.1 wt % to 0.5 wt %. The strength of the new PI films dried at 60° C. increased by 55% and 72% for 0.1 wt % MWCNT and 0.5 wt % MWCNT loadings, respectively, while the fracture resistance increased by 23% for the 0.1 wt % MWCNTs and then decreases at a loading of 0.5 wt % MWCNTs. The films can be advantageously be created by managing a corresponding shift in the annealing temperature at which the maximum strength occurs as the MWCNT loadings increase.
Abstract:
A handle system includes a body extending between a first end and a second end. The handle system also includes a slot extending, at least partially, in the body, the slot forming a cavity. The handle system further includes a carrier arranged, at least partially, within the slot, the carrier further comprising a friction locker and at least one arm coupled to the friction locker, the at least one arm being rotatable about the friction locker. The handle system also includes a cap arranged on at least one of the first end or the second end. The handle system further includes a blade coupled to the at least one arm, the blade being rotatable about the axis between a retracted position where the blade is positioned within the slot and an extended position where the blade extends outwardly from the body.
Abstract:
A photovoltaic cell includes a substrate layer, an anode layer on the substrate layer, an active layer on the anode layer, and a cathode layer on the active layer, wherein the active layer comprises a plurality of disparately sized n-type and p-type nano-particles of different semiconductor materials randomly distributed in a conductive polymer blend. The n-type nano-particles can include either ZnO or In2O3 nano-particles, and the p-type nano-particles can include either NiO or La2O3 nano-particles. The conductive polymer blend can include P3HT. The bandgaps of the nano-particles have corresponding energies ranging from the near ultraviolet to the far infrared.
Abstract:
Interferon-γ-inducible protein 10 (IP-10) peptides, IP-10 peptide variants and in silico designed C-X-C chemokine receptor 3 (CXCR3) peptide agonists are described. The small peptides can be used for inhibiting pathological tissue remodeling and treating fibrosis in a subject, such as a subject with fibrosis of the heart, lung, liver, kidney or skin. The peptide agonists can also be used to treat cardiovascular disease, including myocardial infarction and ischemia-reperfusion injury. Also described are in silico designed peptide antagonists that bind CXCR3 or ligands of CXCR3. These antagonist peptides block CXCR3 signaling by disrupting interaction of CXCR3 with its ligand. Antagonist peptides can be used, for example, to treat myocarditis and atherosclerosis. In additional embodiments agonists and antagonists of CXCR4 are disclosed.
Abstract:
Embodiments of the present disclosure include an injection system. The injection system includes a Resonance Enhanced Microjet (REM) nozzle. The REM nozzles includes a REM nozzle block, the REM nozzle block having an inlet formed in a top and an outlet formed in a bottom, the inlet and outlet being fluid coupled together. The REM nozzle also includes one or more micronozzles positioned about the outlet, the one or more micronozzles having an outlet and being positioned at an angle relative to the bottom. Additionally, the REM nozzle includes an inlet conduit coupled to the REM nozzle block, the inlet conduit being fluidly coupled to the one or more micronozzles. The injection system also includes a source arranged proximate the top, the source directing a source jet of fluid into the inlet. The injection system includes a fuel supply fluidly coupled to the inlet conduit. Such a system can inject a fuel entrained in an oxidizer pulsing at very high-frequency. These pulsed fuel-oxidizer streams can be injected to a high-velocity fluid stream which allows better mixing of fuel and oxidizer at high speed.
Abstract:
A bio-based material including a nanocellulose treated with low-temperature plasma, wherein the bio-based material is capable of sequestering carbon dioxide from an ambient atmosphere. A method is also disclosed.