Abstract:
A fiber optic and electrical connection system includes a fiber optic cable, a ruggedized fiber optic connector, a ruggedized fiber optic adapter, and a fiber optic enclosure. The cable includes one or more electrically conducting strength members. The connector, the adapter, and the enclosure each have one or more electrical conductors. The cable is terminated by the connector with the conductors of the connector in electrical communication with the strength members. The conductors of the connector electrically contact the conductors of the adapter when the connector and the adapter are mechanically connected. And, the conductors of the adapter electrically contact the conductors of the enclosure when the adapter is mounted on the enclosure.
Abstract:
A telecommunications cabinet includes a cabinet housing; a fiber optic splitter; a plurality of spools disposed on a cable management surface; a panel oriented at a fixed angle relative to the access opening so that the panel extends laterally and rearwardly between the access opening and the cable management surface; and a plurality of adapters disposed on the panel.
Abstract:
The present disclosure relates to a fiber optic network configuration having an optical network terminal located at a subscriber location. The fiber optic network configuration also includes a drop terminal located outside the subscriber location and a wireless transceiver located outside the subscriber location. The fiber optic network further includes a cabling arrangement including a first signal line that extends from the drop terminal to the optical network terminal, a second signal line that extends from the optical network terminal to the wireless transceiver, and a power line that extends from the optical network terminal to the wireless transceiver.
Abstract:
One embodiment is directed to a heterogeneous physical layer management system comprising first devices, each comprising first physical layer information acquisition technology to obtain physical layer information about cabling attached to the first devices. The system further comprises second devices, each comprising second physical layer information acquisition technology to obtain physical layer information about cabling attached to the second devices, wherein the second physical layer information acquisition technology differs from the first physical layer information acquisition technology. The system further comprises a common management application communicatively coupled to the first devices and the second devices, wherein the common management application is configured to aggregate physical layer information from the first devices and the second devices. Another embodiment is directed to providing a physical layer management application as a service hosted by a third party. Other embodiments are disclosed.
Abstract:
A fiber optic enclosure includes a housing and a cable spool assembly disposed on an exterior surface of the housing. The cable spool assembly has a first tear-away end and a second tear-away end. The first and second tear-away ends include at least one area of weakness extending from an inner diameter of the cable spool assembly to an outer diameter of the cable spool assembly. A mounting plate is rotationally engaged with the cable spool assembly such that the cable spool assembly and the housing selectively and unitarily rotate about an axis of the mounting plate.
Abstract:
Checking continuity along an optical fiber includes mounting an inspection attachment member to a smart phone; inserting a first end of the optical fiber into a receiving arrangement of the inspection attachment member to align the first end with a light source of the smart phone; activating the light source of the smart phone to shine a light along the optical fiber; and determining whether the light is visible at an opposite end of the optical fiber. Certain types of inspection attachment members also are configured to align an end of an optical fiber with a camera lens of the smart phone.
Abstract:
The present disclosure relates to a fiber optic network configuration having an optical network terminal located at a subscriber location. The fiber optic network configuration also includes a drop terminal located outside the subscriber location and a wireless transceiver located outside the subscriber location. The fiber optic network further includes a cabling arrangement including a first signal line that extends from the drop terminal to the optical network terminal, a second signal line that extends from the optical network terminal to the wireless transceiver, and a power line that extends from the optical network terminal to the wireless transceiver.
Abstract:
A telecommunications cabinet includes a cabinet housing; a fiber optic splitter; a plurality of spools disposed on a cable management surface; a panel oriented at a fixed angle relative to the access opening so that the panel extends laterally and rearwardly between the access opening and the cable management surface; and a plurality of adapters disposed on the panel.
Abstract:
A spool assembly includes a drum having a first axial end and an oppositely disposed second axial end. The drum includes an inner surface that defines a bore that extends through the first and second axial ends. A drum support is disposed in the bore of the drum. The drum support includes a first end and an oppositely disposed second end. The drum support has an exterior surface. The exterior surface of the drum support and the inner surface of the drum define a plurality of channels. A first flange is engaged to the first end of the drum support. A second flange is engaged to the second end of the drum support.
Abstract:
An optical fiber cable management panel includes drawer assemblies, each including a drawer slidable within a chassis. The drawer assemblies are secured together by a bracket that includes an interlock arrangement with the chassis. Such an interlock arrangement includes a non-threaded stud engaging a hole. Radius limiters may be part of the drawer assembly and include a cable entry aperture have a closed perimeter and a flared cable guide surface around most of, and preferably all of, the closed perimeter to allow for the entry of cables from all directions. A control mechanism controls movement of the radius limiter relative to the drawer assembly. The control mechanism includes a rotating member that has an axis of rotation transverse to the slidable motion of the radius limiter and normal to the radius limiter.