Abstract:
A molding system includes a flexible cable carrier body that defines a sealing opening that provides access to an interior channel. A continuous length of the flexible cable carrier body is wrapped about a spool for storage and for ease of dispensing at a work site. The continuous length of the cable carrier body is cut to desired custom lengths during installation at the work site. An insertion tool having a plow and feeder channel can facilitate payoff of the fiber/cable into the cable carrier body.
Abstract:
A power and optical fiber interface system includes a housing having an interior. A cable inlet is configured to receive a hybrid cable having an electrical conductor and an optical fiber. An insulation displacement connector (IDC) is situated in the interior of the housing configured to electrically terminate the conductor, and a cable outlet is configured to receive an output cable that is connectable to the IDC and configured to output signals received via the optical fiber.
Abstract:
The present disclosure relates to a telecommunications cable having a layer constructed to resist post-extrusion shrinkage. The layer includes a plurality of discrete shrinkage-reduction members embedded within a base material. The shrinkage-reduction members can be made of a liquid crystal polymer. The disclosure also relates to a method for manufacturing telecommunications cables having layers adapted to resist post-extrusion shrinkage.
Abstract:
The present disclosure relates to a hybrid cable having a jacket with a central portion positioned between left and right portions. The central portion contains at least one optical fiber and the left and right portions contain electrical conductors. The left and right portions can be manually torn from the central portion.
Abstract:
An optical fiber cable includes an optical fiber; a sheet of reinforcing tape rolled around a majority of an annular sidewall of the optical fiber; and a jacket surrounding the rolled sheet of reinforcing tape. The sheet has parallel longitudinal edges that are circumferentially spaced from each other to form a longitudinal slit along a length of the sheet of reinforcing tape. The reinforcing tape is formed of a polymeric material having uni-directionally oriented molecules along the length of the sheet. The jacket is heat-bonded to the sheet of reinforcing tape.
Abstract:
A fiber optic cable includes an optical fiber, a strength layer surrounding the optical fiber, and an outer jacket surrounding the strength layer. The strength layer includes a matrix material in which is integrated a plurality of reinforcing fibers. A fiber optic cable includes an optical fiber, a strength layer, a first electrical conductor affixed to an outer surface of the strength layer, a second electrical conductor affixed to the outer surface of the strength layer, and an outer jacket. The strength layer includes a polymeric material in which is embedded a plurality of reinforcing fibers. A method of manufacturing a fiber optic cable includes mixing a base material in an extruder. A strength layer is formed about an optical fiber. The strength layer includes a polymeric film with embedded reinforcing fibers disposed in the film. The base material is extruded through an extrusion die to form an outer jacket.
Abstract:
The present disclosure relates to a telecommunications cable having a layer constructed to resist post-extrusion shrinkage. The layer includes a plurality of discrete shrinkage-reduction members embedded within a base material. The shrinkage-reduction members can be made of a liquid crystal polymer. The disclosure also relates to a method for manufacturing telecommunications cables having layers adapted to resist post-extrusion shrinkage.
Abstract:
A fiber optic cable includes an optical fiber, a strength layer surrounding the optical fiber, and an outer jacket surrounding the strength layer. The strength layer includes a matrix material in which is integrated a plurality of reinforcing fibers. A fiber optic cable includes an optical fiber, a strength layer, a first electrical conductor affixed to an outer surface of the strength layer, a second electrical conductor affixed to the outer surface of the strength layer, and an outer jacket. The strength layer includes a polymeric material in which is embedded a plurality of reinforcing fibers. A method of manufacturing a fiber optic cable includes mixing a base material in an extruder. A strength layer is formed about an optical fiber. The strength layer includes a polymeric film with embedded reinforcing fibers disposed in the film. The base material is extruded through an extrusion die to form an outer jacket.
Abstract:
The present disclosure relates to a fiber optic network configuration having an optical network terminal located at a subscriber location. The fiber optic network configuration also includes a drop terminal located outside the subscriber location and a wireless transceiver located outside the subscriber location. The fiber optic network further includes a cabling arrangement including a first signal line that extends from the drop terminal to the optical network terminal, a second signal line that extends from the optical network terminal to the wireless transceiver, and a power line that extends from the optical network terminal to the wireless transceiver.
Abstract:
An example fiber optic cable includes an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The second passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The fiber optic cable also includes a plurality of optical fibers positioned within the first passage a tensile strength member positioned within the second passage.