Abstract:
Techniques for forming a metal oxide from a metal substrate are disclosed. In some embodiments, the metal oxide can have an optical path difference between about 300 nm to about 1000 nm. The variations in optical path difference can impart the metal oxide to correspond to a range of pre-defined colors. In some embodiments, the optical path difference can impart the metal oxide to have an oxide color that is substantially similar to a color of a housing of a portable electronic device. In some embodiments, the metal oxide can be electrically conductive and the metal oxide can be utilized as an electrical contact of an electronic device to transmit and receive power and data from another electronic device.
Abstract:
Contacts that may be highly corrosion resistant, may be readily manufactured, and may conserve precious materials. One example may provide contacts having a layer of a precious-metal alloy to improve corrosion resistance. The precious-metal-alloy layer may be plated with a hard, durable, wear and corrosion resistant plating stack for further corrosion resistance and wear improvement. The resources consumed by a contact may be reduced by forming a bulk or substrate region of the contact using a more readily available material, such as copper or a material that is primarily copper based.
Abstract:
Techniques for forming a metal oxide from a metal substrate are disclosed. In some embodiments, the metal oxide can have an optical path difference between about 300 nm to about 1000 nm. The variations in optical path difference can impart the metal oxide to correspond to a range of pre-defined colors. In some embodiments, the optical path difference can impart the metal oxide to have an oxide color that is substantially similar to a color of a housing of a portable electronic device. In some embodiments, the metal oxide can be electrically conductive and the metal oxide can be utilized as an electrical contact of an electronic device to transmit and receive power and data from another electronic device.
Abstract:
The embodiments described herein relate to treatments for anodic layers. The methods described can be used to impart a white appearance for an anodized substrate. The anodized substrate can include a metal substrate and a porous anodic layer derived from the metal substrate. The porous anodic layer can include pores defined by pore walls and fissures formed within the pore walls. The fissures can act as a light scattering medium to diffusely reflect visible light. In some embodiments, the method can include forming fissures within the pore walls of the porous anodic layer. In some embodiments, exposing the porous anodic layer to an etching solution can form fissures. The method further includes removing a top portion of the porous anodic layer while retaining a portion of the porous anodic layer.
Abstract:
The embodiments described herein relate to anodic films and methods for forming anodic films. The methods described can be used to form anodic films that have a white appearance. Methods involve positioning reflective particles on or within a substrate prior to or during an anodizing process. The reflective particles are positioned within the metal oxide of the resultant anodic film but substantially outside the pores of the anodic film. The reflective particles scatter incident light giving the resultant anodic film a white appearance.
Abstract:
The embodiments described herein relate to anodic films and methods for forming anodic films. The methods described can be used to form anodic films that have a white appearance. Methods involve positioning reflective particles on or within a substrate prior to or during an anodizing process. The reflective particles are positioned within the metal oxide of the resultant anodic film but substantially outside the pores of the anodic film. The reflective particles scatter incident light giving the resultant anodic film a white appearance.
Abstract:
The embodiments described herein relate to forming anodized films that have a white appearance. In some embodiments, an anodized film having pores with light diffusing pore walls created by varying the current density during an anodizing process is described. In some embodiments, an anodized film having light diffusing micro-cracks created by a laser cracking procedure is described. In some embodiments, a sputtered layer of light diffusing aluminum is provided below an anodized film. In some embodiments, light diffusing particles are infused within openings of an anodized layer.
Abstract:
The embodiments described herein relate to forming anodized films that have a white appearance. In some embodiments, an anodized film having pores with light diffusing pore walls created by varying the current density during an anodizing process is described. In some embodiments, an anodized film having light diffusing micro-cracks created by a laser cracking procedure is described. In some embodiments, a sputtered layer of light diffusing aluminum is provided below an anodized film. In some embodiments, light diffusing particles are infused within openings of an anodized layer.