Abstract:
Systems and methods are provided for improving displayed image quality of an electronic display that includes a display pixel. The electronic display displays a first image frame directly after a second image frame by applying an analog electrical signal to the display pixel. To facilitate display of the first image frame, circuitry receives image data corresponding to the image frame, in which the image data includes a grayscale value that indicates target luminance of the display pixel; determines expected refresh rate of the first image frame based at least in part on actual refresh rate of the second image frame; determines a pixel response correction offset based at least in part on the expected refresh rate of the first image frame; and determines processed image data by applying the pixel response correction offset to the grayscale value, in which the processed image data indicates magnitude of the analog electrical signal.
Abstract:
A sensing device can be included in a display of an electronic device. Various techniques can be used to reduce display noise in the signals output from the sensing device. The techniques include the use of a filtering layer in a display stack, the use of a non-uniform sampling scheme, averaging together noise signal samples sampled over multiple display frames, and inverting a phase of the sampling of the noise signal over multiple display frames.
Abstract:
A display may have a substrate layer to which a display driver integrated circuit and flexible printed circuit are bonded. The display driver integrated circuit may be provided with switches and control circuitry for controlling the operation of the switches during bond resistance measurements. Test equipment may apply currents to pads in the display driver integrated circuit through contacts in the flexible printed circuit while controlling the switching circuitry. Based on these measurements and the measurement of trace resistances in a dummy flexible printed circuit, the test equipment may determine bond resistances for bonds between the display driver integrated circuit and the display substrate and between the flexible printed circuit and the display substrate. Displays may have master and slave display driver integrated circuits that share coarse reference voltages produced by the master from raw power supply voltages.
Abstract:
Systems and methods for efficiently generating display driver timing signals are provided. In one example, display driver circuitry of an electronic display may provide a negative voltage from a negative voltage supply to display control circuitry during a first period and may provide a positive voltage from a positive voltage supply to the display control circuitry during a second period. After providing the negative voltage during the first period but before providing the positive voltage during the second period, the display driver circuitry may precharge the capacitance of the display control circuitry to ground. In this way, the positive voltage supply substantially does not supply charge to raise the voltage on the capacitance of the display control circuitry from the negative voltage to ground.
Abstract:
The present disclosure relates to devices and methods for reducing power consumption of a display. One electronic display includes a first switch coupled between a first gate of a first transistor and a second gate of a second transistor to selectively connect the first gate to the second gate. The display includes a second switch coupled between the second gate of the second transistor and a third gate of a third transistor to selectively connect the second gate to the third gate. The display also includes driving circuitry that controls the first switch to connect the first gate to the second gate to share a first charge between the first and second gates. The driving circuitry also controls the second switch to connect the second gate to the third gate to share a second charge between the second and third gates. Accordingly, power consumption of the display may be reduced.
Abstract:
An electronic device includes a display having multiple regions of pixels. Each pixel includes a diode that emits light based on an amount of current through the diode and a transistor that controls the amount of current flowing through the diode. The electronic device includes driver-integrated circuitry that reduces hysteresis in a first transistor of a first pixel of a region of pixels, settles a threshold voltage of the first transistor, applies a test voltage to the first transistor, and senses a current across the first transistor. The electronic device includes processing circuitry that determines a predetermined voltage based on the current and a predetermined current-voltage relationship determined at an initial temperature, determines a voltage difference between the test voltage and the predetermined voltage, and applies the predetermined voltage and the voltage difference to a second transistor of a second pixel of the region of pixels.
Abstract:
An electronic device may include processing circuitry configured to generate a first frame of image content and a second frame of image content. The second frame of image content is different from the first frame of image content. The electronic device may also include a display configured to display the first frame of image content at a first refresh rate. In response to receiving the second frame of image content, the electronic device may initially increase the refresh rate before tapering back to the first refresh rate while displaying the second frame of image content.
Abstract:
Systems and methods are described here to compensate for crosstalk (e.g., coupling distortions) that may be caused by a fanout overlaid or otherwise affecting signals transmitted within an active area of an electronic display. The systems and methods may be based on buffered previous image data. Technical effects associated with compensating for the crosstalk may include improved display of image frames since some image artifacts are mitigated and/or made unperceivable or eliminated.
Abstract:
In a display characterized by regions with different pixel responses due, for example, to local pixel density variation, voltage-to-luminance matching may be non-universal. Therefore, in order to avoid visual artifacts that may hinder a desired visualization of displayed content, it may be advantageous to compensate the different gamma responses. In some cases, such as with electronic devices having a single pixel density across the display, optical calibration may be performed to determine voltage-to-luminance matching. However, in electronic devices with local pixel density variations, it may be disadvantageous to perform optical calibrations for each region with a different pixel density. Instead of using two distinct gamma curves which may include dedicated optical calibration, a global nonlinear scaler (GNLS) compensation may be applied. Embodiments may pertain to techniques for applying a per-channel and band-global gamma-to-voltage compensation to reduce or minimize a relative luminance error amongst different responses of display regions.
Abstract:
This disclosure provides various techniques for providing fine-grain digital and analog pixel compensation to account for voltage error across an electronic display. By employing a two-dimensional digital compensation and a local analog compensation, a fine-grain and robust pixel compensation scheme may be provided to the electronic display.