Abstract:
A display may have a thin-film transistor layer formed from a layer of thin-film, transistor circuitry on a substrate. The thin-film transistor layer may overlap a color filter layer. A portion of the thin-film transistor layer may extend past the color filter layer to for a ledge region. Components such as a flexible printed circuit and a display driver integrated circuit may be mounted to the thin-film transistor layer in the ledge region. The components may have alignment marks. The thin-film transistor layer may have a black masking layer that is patterned to form openings for display pixels. In a border area of the display that overlaps the ledge region, the thin-film transistor layer may have alignment mark viewing windows. Alignment marks formed from black masking material in the windows may be aligned with respective alignment marks on the components.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A layer of liquid crystal material may be located between the color filter layer and the thin-film transistor layer. Column spacers may be formed on the color filter layer to maintain a desired gap between the color filter and thin-film transistor layers. Support pads may be used to support the column spacers. Different column spacers may be located at different portions of the support pads to allow the support pad size to be reduced while ensuring adequate support. Lateral movement blocking structures such as circular rings may be used to prevent column spacer lateral movement. Subspacers located over pads may be used to create friction that retards lateral movement. Lateral movement may also be retarded by receiving column spacers in trenches or other recesses formed on a thin-film transistor layer.
Abstract:
One embodiment may take the form of a UV mask for use while curing sealant on LCD displays. The UV mask includes a mother glass and a UV mask layer on the mother glass. A UV absorption film is located adjacent the UV mask layer and an anti-reflection (AR) film is located adjacent the UV absorption film.
Abstract:
A system and device for driving high resolution monitors while reducing artifacts thereon. Utilization of Z-inversion polarity driving techniques to drive pixels in a display reduces power consumption of the display but tends to generate visible horizontal line artifacts caused by capacitances present between the pixels and data lines of the display. By introducing a physical shield between the pixel and data line elements, capacitance therebetween can be reduced, thus eliminating the cause of the horizontal line artifacts. The shield may be a common voltage line (Vcom) of the display.