Abstract:
An electronic device may have a display with touch sensors. One or more shielding layers may be interposed between the display and the touch sensors. The shielding layers may include shielding structures such as a conductive mesh structure and/or a transparent conductive film. The shielding structures may be actively driven or passively biased. In the active driving scheme, one or more inverting circuits may receive a noise signal from a cathode layer in the display and/or from the shielding structures, invert the received noise signal, and drive the inverted noise signal back onto the shielding structures to prevent any noise from the display from negatively impacting the performance of the touch sensors. In the passive biasing scheme, the shielding structures may be biased to a power supply voltage.
Abstract:
A display may have an array of pixels arranged in rows and columns. Each pixel may have a transistor for controlling the amount of output light associated with that pixel. The transistors may be thin-film transistors having active areas, first and second source-drain terminals, and gates. Gate lines may be used to distribute gate control signals to the gates of the transistors in each row. Data lines that run perpendicular to the gate lines may be used to distribute image data along columns of pixels. The gate lines may be connected to gate line extensions that run parallel to the data lines. The data lines may each overlap a respective one of the gate line extensions. Vias may be used to connect the gate line extensions to the gate lines. The gate line extensions may all have the same length.
Abstract:
A touch screen is disclosed. The touch screen can comprise a substrate having a first surface upon which a touch or proximity event is to be detected, and a second surface that opposes the first surface, and a touch sensor electrode and a first display pixel including a first display pixel TFT formed on the second surface of the substrate. The first touch sensor electrode can be disposed between the second surface of the substrate and the first display pixel TFT, and the first touch sensor electrode can be configured to detect the touch or proximity event. In some examples, the substrate can comprise a TFT glass substrate. In some examples, the touch screen can comprise a first touch sensor routing electrically coupled to the first touch sensor electrode, wherein the first touch sensor routing is disposed between the second surface of the substrate and the first display pixel TFT.
Abstract:
A touch screen display may include gate line driver circuitry coupled to a display pixel array. The display may be provided with intra-frame pausing (IFP) capabilities, where touch or other operations may be performed during one or more intra-frame blanking intervals. In one suitable arrangement, a gate driver circuit may include multiple gate line driver segments each of which is activated by a separate gate start pulse. Each gate start pulse may only be released at the end of an IFP interval. In another suitable arrangement, dummy gate driver units may be interposed among active gate driver units. Gate output signals may propagate through the dummy gate driver units during the IFP internal. In another suitable arrangement, each active gate driver unit may be provided with a buffer portion that protects at least some transistor in the gate driver unit from undesired stress.
Abstract:
A display may have an array of pixels arranged in rows and columns. Each pixel may have a transistor for controlling the amount of output light associated with that pixel. The transistors may be thin-film transistors having active areas, first and second source-drain terminals, and gates. Gate lines may be used to distribute gate control signals to the gates of the transistors in each row. Data lines that run perpendicular to the gate lines may be used to distribute image data along columns of pixels. The gate lines may be connected to gate line extensions that run parallel to the data lines. The data lines may each overlap a respective one of the gate line extensions. Vias may be used to connect the gate line extensions to the gate lines. The gate line extensions may all have the same length.
Abstract:
An electronic device may have a display such as a liquid crystal display. The display may have a color filter layer and a thin-film transistor (TFT) layer. An active portion of the display may contain an array of display pixels that are controlled by control signals that are provided over intersecting gate lines and data lines. In an inactive portion of the display, display driver circuitry may be used to provide data signals for the data lines. Each display pixel may be coupled to a corresponding gate line, data line, and may share a common electrode. Changes in the data signals may be coupled onto the common electrode to cause voltage rippling. Compensation circuitry may be coupled to the common electrode via an AC or a DC coupling connection to help reduce the voltage rippling.
Abstract:
An electronic device may have a housing and a display in the housing. The display may have one or more curved edges such as curved edges associated with rounded corners in the display and housing. The display may have an array of pixels. The display may include full-strength pixels and may have a band of antialiasing pixels having selectively reduced strengths to visually smooth content displayed along the curved edges. The pixels may be organic light-emitting diode pixels, liquid crystal display pixels, or other display pixels. Organic light-emitting diode pixels may have drive transistors and associated organic light-emitting diodes. Selectively elevated series or opaque light blocking structures of selectively reduced areas may be used to selectively reduce the strength of the antialiasing pixels. Liquid crystal display pixels may include electrodes of different shapes and/or opaque layer openings of different sizes to form antialiasing pixels in desired patterns.
Abstract:
The disclosure relates to systems and methods for reducing VCOM settling periods. A number of pixels is sub-divided into a plurality of regions. The pixels are configured to transmit light. A common voltage (VCOM) driving circuit is configured to drive a common electrode of the pixels. Moreover, each of a number of VCOM driving circuits includes a variable resistor configured to be driven to a resistance level based at least in part on which region of the plurality of regions includes an active pixel within the region. Furthermore, a resistance level is set and based at least in part on where the active pixel is located.
Abstract:
A display is provided that includes an array of display pixels and gate driver circuitry for providing data and gate line signals to the display pixels. Gate driver circuitry may include gate driver circuits that generate the gate line signals. A gate driver circuit may include at least a buffer transistor, a bootstrapping capacitor coupled to the buffer transistor, a pulldown transistor coupled in series with the buffer transistor, and an isolation transistor coupled to the gate of the pulldown transistor. The buffer transistor may directly receive a first clock signal, whereas the isolation transistor may directly receive a second clock signal that is complementary to the first clock signal. The pulldown transistor is substantially larger than the buffer transistor. The buffer transistor is substantially larger than the isolation transistor. Configured as such, clock loading is minimized while the pulldown transistor is sized to provide the desired fall time performance.
Abstract:
A display may have an array of pixels arranged in rows and columns. Each pixel may have a transistor for controlling the amount of output light associated with that pixel. The transistors may be thin-film transistors having active areas, first and second source-drain terminals, and gates. Gate lines may be used to distribute gate control signals to the gates of the transistors in each row. Data lines that run perpendicular to the gate lines may be used to distribute image data along columns of pixels. The gate lines may be connected to gate line extensions that run parallel to the data lines. The data lines may each overlap a respective one of the gate line extensions. Vias may be used to connect the gate line extensions to the gate lines. The gate line extensions may all have the same length.