Abstract:
Apparatuses, systems, and methods for user equipment (UE) devices to perform a postponement of a data service request are described. A UE may detect a data service request failure during cell reselection and postpone a resend of the data service request based on a status of the cell reselection. The status may be an indication that the UE is attempting to camp on a cell or that the UE is monitoring one or more metrics associated with cell reselection. To postpone the data service request, the UE may postpone the data service request for a specified period of time or until the cell reselection is complete. The status may be monitored on a first layer of a protocol stack and the data service request may generated by a second layer of the protocol stack. The postponement may be for a fixed or variable time period.
Abstract:
A method for negotiating a session personality based at least in part on a roaming agreement is provided. The method can include a roaming access network receiving an identifier provided by an access terminal attendant to establishment of a session between the access terminal and the roaming access network. The method can further include the roaming access network using the identifier to determine a home network associated with the access terminal. The method can additionally include the roaming access network determining one or more radio access technology (RAT) versions covered by a roaming agreement between the home network and the roaming access network. The method can also include the roaming access network negotiating a session personality for use in the session based at least in part on the one or more RAT versions covered by the roaming agreement.
Abstract:
Methods and apparatus for accepting software updates without interruption of ongoing services. Various embodiments are adapted for maintaining service continuity in multi-mode devices such as cellular devices. In one exemplary implementation, unlike prior art solutions (which interrupt user identity module software to implement changes to the network access software), unnecessary updates can be postponed or otherwise scheduled so as to minimize or eliminate service or user experience impact.
Abstract:
This disclosure relates to caching SIM files at a baseband processor to reduce cellular bootup time. According to one embodiment, a wireless device may read SIM files from a SIM and store a local copy of each file in a cache of the baseband processor of the wireless device. SIM identification information for the SIM from which the cached files were read may be associated with the cache. Indicator information usable for comparing file versions may also be generated and stored in the cache for each file. Upon a subsequent SIM initialization, the wireless device may read SIM files from the cache instead of from the initialized SIM if the cached version is identical to the SIM version, which may be determined based at least in part on the SIM identification information and the indicator information for such files.
Abstract:
A method to control measurement messaging is performed at a mobile wireless device. The mobile wireless device transmits a first measurement message to a radio access network in a wireless network and stores the first measurement message pending receipt of an acknowledgement from the radio access network. Before receiving the acknowledgement to the first measurement message, the mobile wireless device determines at least one parameter included in the first measurement message requires updating. The mobile wireless device deletes the stored pending first measurement message and transmits a second measurement message to the radio access network including an updated value for the at least one parameter in the first measurement message.
Abstract:
Methods and apparatus for accepting software updates without interruption of ongoing services. Various embodiments are adapted for maintaining service continuity in multi-mode devices such as cellular devices. In one exemplary implementation, unlike prior art solutions (which interrupt user identity module software to implement changes to the network access software), unnecessary updates can be postponed or otherwise scheduled so as to minimize or eliminate service or user experience impact.
Abstract:
Embodiments described herein relate to managing access to 5G cellular baseband resources for 5G-capable wireless devices. A wireless device can monitor application workloads by analyzing communication network performance requirements for a given application in-use or launching for future use along with system-level indications of overall device usage, battery level, and mobility status to determine whether access to 5G cellular baseband resources is recommended for an application. A 5G cellular baseband resource recommendation is provided for an application indicating a level of bandwidth in current use or expected for future use as well as a confidence metric in the bandwidth level indication. The 5G cellular baseband resource recommendation is used with additional device criteria to determine whether access to one or more 5G radio frequency bands is allowed.
Abstract:
A method includes receiving an indication to transmit a first set of signals using a first standard (e.g., Long Term Evolution) via a first set of antennas of a radio frequency device and a second set of signals using a second standard (e.g., New Radio) via a second set of antennas. The method also includes transmitting the first set of signals via the first set of antennas using a first power based on positions of the first set and second set of antennas, exposure conditions of the first set and the second set of signals on a user, and/or priorities of the first and the second set of signals. Moreover, the method includes transmitting the second set of signals via the second set of antennas using a second power based on the positions of the antennas, the exposure conditions of the signals on the user, and/or priorities of the signals.
Abstract:
An electronic device may include wireless circuitry with a phased antenna array that conveys radio-frequency signals using signal beams of first and second orthogonal polarizations. The array may sweep over a set of signal beam pairs, each including a respective combination of signal beams of the first and second polarizations. The wireless circuitry may gather performance metric values for each of the polarizations and signal beam pairs. The circuitry may generate a filtered set of signal beam pairs by removing signal beam pairs having performance metric values that differ from a maximum of the wireless performance metric values by more than a threshold. The circuitry may select a signal beam pair from the filtered set having a minimum polarization imbalance. The array may concurrently convey first and second wireless data streams using the selected signal beam pair. Minimizing polarization imbalance may maximize overall data throughput for the device.
Abstract:
In an example method, a first device determines first network resources that have been activated for exchanging data with one or more second devices via a wireless network, and determines, for each of the first network resources, a time duration of a respective burst transmission performed using that first network resource. The first device determines whether to (i) activate second network resources for exchanging data with the second devices and/or (ii) deactivate one or more of the first network resources for exchanging data with the second devices. In response, the first device activates the second network resources and/or deactivates the one or more of the first network resources.