Abstract:
A method includes receiving location data related to devices transmitted during a first interval. The location data includes at least two GPS points of a first device and a single GPS point of a second device. The method includes identifying a subset of the devices that are within a vicinity of an area associated with a traffic event based on the data. The method includes determining that the first device will not approach the area during a second interval based on the two GPS points and determining that the second device will not approach the geographic area during the second interval based at least on the single GPS data point and a second location datum. The method includes filtering the first and second devices from the subset and transmitting an alert indicative of the traffic event to the subset.
Abstract:
Techniques for facilitating cellular or wireless fidelity access point selection are provided. In one example herein a method is provided comprising receiving, by a mobile device comprising a processor, first radio load data associated with a predicted radio load of a first channel of a first wireless device. Based on a first condition associated with the first radio load being determined to have been satisfied, the method can facilitate, by the mobile device, receiving second radio load data, indicative of a current radio load, from a second wireless device. Additionally, in response to a second condition associated with the current radio load being determined to have been satisfied, the method can utilize, by the mobile device, a second channel of the second wireless device for a communication.
Abstract:
The location of a mobile device may be determined based on information that includes the signal strength of nearby radiation sources. The system may disregard information associated with radiation sources that are determined to be mobile.
Abstract:
Determining a location quality based on base station identification is disclosed. The location quality can be based on an error attributed to a location determined based on historical data related to an identified base station. Application of supplemental data to the historical base station data can improve location quality by reducing the error. Supplemental data can comprise Voronoi data, geographic data, historical UE density data, historical UE timing advance data, or combinations thereof. Voronoi data can be associated with an area less than a service area of the base station. Geographic data can indicate areas where UEs are not likely to be located. UE density data can indicate probably UE locations. Timing advance data can indicate annular regions where a UE should be located. As such, the supplemental data can constrain a location determined for a UE and correspondingly can reduce error associated with the location.
Abstract:
Determining a permission for a user equipment to connect to an access point based on the public/private status of the access point device is disclosed. The permission can be based on a historic user equipment density for an area comprising the location of the access point device. The permission can be further based on analysis of an access point device identifier. Analysis of the access point device identifier can be based on comparing a portion of the access point device identifier to a term associated with either a public status or a private status of the access point device. In an embodiment, the access point device identifier can be an SSID, such as for a Wi-Fi network, whereby the SSID can be parsed into keywords that can be compared to the term. Ranking and/or white/blacklisting can be performed based on the analysis of the access point device identifier.
Abstract:
The location of a mobile device may be determined based on information that includes the signal strength of nearby radiation sources. The system may disregard information associated with radiation sources that are determined to be mobile.
Abstract:
A network access credential can be shared among devices based on location information for a device. Location information can include timed fingerprint location information. In an aspect, location information can be associated with a location of user equipment. This location information can be correlated with network access credentials. Location information can be used to access a relevant network access credential. The relevant network access credential can be shared with other devices. In an embodiment, sharing a network access credential can be between mobile devices. In another embodiment, sharing a network access credential can be between a remote computing device and a mobile device. Sharing a credential can allow for access to a network without having to generate or input new credentials.
Abstract:
A network access credential can be shared among devices based on location information for a device. Location information can include timed fingerprint location information. In an aspect, location information can be associated with a location of user equipment. This location information can be correlated with network access credentials. Location information can be used to access a relevant network access credential. The relevant network access credential can be shared with other devices. In an embodiment, sharing a network access credential can be between mobile devices. In another embodiment, sharing a network access credential can be between a remote computing device and a mobile device. Sharing a credential can allow for access to a network without having to generate or input new credentials.
Abstract:
A method includes receiving, at a first computing device, first data associated with a performance indicator of a wireless wide area network for a first time period. The method also includes determining, at the first computing device, whether the performance indicator satisfies a performance threshold. The method further includes, based on determining that the performance indicator does not satisfy the performance threshold, offloading one or more communication devices from the wireless wide area network so that the performance indicator satisfies the performance threshold. The method finally includes sending a first instruction to a second computing device. The second computing device enables one or more access points to provide mobile communication services to the one or more communication devices.
Abstract:
A network access credential can be shared among devices based on location information for a device. Location information can include timed fingerprint location information. In an aspect, location information can be associated with a location of user equipment. This location information can be correlated with network access credentials. Location information can be used to access a relevant network access credential. The relevant network access credential can be shared with other devices. In an embodiment, sharing a network access credential can be between mobile devices. In another embodiment, sharing a network access credential can be between a remote computing device and a mobile device. Sharing a credential can allow for access to a network without having to generate or input new credentials.