Abstract:
A computer-implemented method and system are described for deblurring an image. The method may include accessing an image having a first blurred region and a second blurred region, and generating a first blur kernel for the first blurred region and a second blur kernel for the second blurred region. Thereafter, the first blur kernel is positioned with respect to the first blurred region, and the second blur kernel is positioned with respect to the second blurred region based on the position of the first blur kernel. The image is then deblurred by deconvolving the first blurred region with the first blur kernel, and deconvolving the second blurred region with the second blur kernel.
Abstract:
Techniques and apparatus for automatic upright adjustment of digital images. An automatic upright adjustment technique is described that may provide an automated approach for straightening up slanted features in an input image to improve its perceptual quality. This correction may be referred to as upright adjustment. A set of criteria based on human perception may be used in the upright adjustment. A reprojection technique that implements an optimization framework is described that yields an optimal homography for adjustment based on the criteria and adjusts the image according to new camera parameters generated by the optimization. An optimization-based camera calibration technique is described that simultaneously estimates vanishing lines and points as well as camera parameters for an image; the calibration technique may, for example, be used to generate estimates of camera parameters and vanishing points and lines that are input to the reprojection technique.
Abstract:
Embodiments of the present invention provide systems, methods, and computer storage media directed towards automatic selection of regions for blur kernel estimation. In one embodiment, a process divides a blurred image into a regions. From these regions a first region and a second region can be selected based on a number of edge orientations within the selected regions. A first blur kernel can then be estimated based on the first region and a second blur kernel can be estimated for the second region. The first and second blur kernel can then be utilized to respectively deblur a first and second portion of the image to produce a deblurred image. Other embodiments may be described and/or claimed.
Abstract:
The present disclosure is directed toward systems and method for warping a panoramic image to fit a predetermined shape using content-unaware warping techniques. For example, systems and methods described herein involve generating a mesh grid for a panoramic image with skewed edges by sampling boundary points around edges of the panoramic image and interpolated interior vertex points from the boundary points. Further, systems and methods described herein involve warping the mesh grid and underlying pixels of the panoramic image to fit a predetermined boundary. Further, systems and methods described herein involve generating the mesh grid and warping the panoramic image without consideration of content included therein and without overly-warping individual cells of the mesh grid and underlying pixels of the panoramic image.
Abstract:
Techniques involving flexible video object boundary tracking are described. One or more curves, such as Bezier curves, are received as drawn by a user on an initial frame of video to define a boundary of an object in the frame. The curves are then mapped to a subsequent or previous frame of the video where the object is included but has a new or changed boundary. A segmentation boundary is determined for the object in the subsequent frame and endpoints of segments of the curves are snapped to the segmentation boundary. Additionally, confidence values are determined for subregions of the frame that include portions of the curves. These confidence values are used to update control points on the curve segments to fit the curve segments to the new or changed boundary of the object in the frame.
Abstract:
Techniques are disclosed for removing haze from an image or video by constraining the medium transmission used in a haze image formation model. In particular, a de-hazed scene, which is a function of a medium transmission, is constrained to be greater than or equal to a fractionally scaled variant of the input image. The degree to which the input image is scaled can be selected manually or by using machine learning techniques on a pixel-by-pixel basis to achieve visually pleasing results. Next, the constrained medium transmission is filtered to be locally smooth with sharp discontinuities along image edge boundaries to preserve scene depth. This filtering results in a prior probability distribution that can be used for haze removal in an image or video frame. The input image is converted to gamma decoded sRGB linear space prior to haze removal, and gamma encoded into sRGB space after haze removal.
Abstract:
A computer-implemented method and apparatus are described for automatically selecting a region in a blurred image for blur kernel estimation. The method may include accessing a blurred image and defining a size for each of a plurality of regions in the image. Thereafter, metrics for at least two of the plurality of regions are determined, wherein the metrics are based on a number of edge orientations within each region. A region is selected from the plurality of regions based on the determined metrics, and a blur kernel for deblurring the blurred image is then estimated for the selected region. The blurred image is then deblurred using the blur kernel.
Abstract:
A computer-implemented method and apparatus are described for deblurring an image. The method may include accessing the image that has at least one blurred region and, automatically, without user input, determining a first value for a first size for a blur kernel for the at least one blurred region. Thereafter, automatically, without user input, a second value for a second size for the blur kernel is determined for the at least one blurred region. A suggested size for the blur kernel is then determined based on the first value and the second value.
Abstract:
Techniques and apparatus for automatic upright adjustment of digital images. An automatic upright adjustment technique is described that may provide an automated approach for straightening up slanted features in an input image to improve its perceptual quality. This correction may be referred to as upright adjustment. A set of criteria based on human perception may be used in the upright adjustment. A reprojection technique that implements an optimization framework is described that yields an optimal homography for adjustment based on the criteria and adjusts the image according to new camera parameters generated by the optimization. An optimization-based camera calibration technique is described that simultaneously estimates vanishing lines and points as well as camera parameters for an image; the calibration technique may, for example, be used to generate estimates of camera parameters and vanishing points and lines that are input to the reprojection technique.
Abstract:
An image de-blurring system obtains a blurred input image and generates, based on the blurred input image, a blur kernel. The blur kernel is an indication of how the image capture device was moved and/or how the subject captured in the image moved during image capture. Based on the blur kernel and the blurred input image, a de-blurred image is generated. The blur kernel is generated based on the direction of edges identified in the blurred input image and/or based on curves having a high curvature identified in the image (e.g., corners identified in the image).