摘要:
A device contains a first layer (420), a second layer (440); and a membrane (430) between the first and second layers (420, 440). Mobile ions (425) are in at least one of the first and second layers (420, 440), and the membrane (430) is permeable to the ions. Interfaces of the conductive membrane (430) with the first layer (420) and the second layer (440) are such that charge of a polarity of the ions (425) collects at the interfaces.
摘要:
Various embodiments of the present invention are directed to sensor networks and to methods for fabricating sensor networks. In one aspect, a sensor network includes a processing node (110, 310), and one or more sensor lines (102,202,302) optically coupled to the processing node. Each sensor line comprises a waveguide (116,216,316), and one or more sensor nodes (112,210). Each sensor node is optically coupled to the waveguide and configured to measure one or more physical conditions and, encode measurement results in one or more wavelengths of light carried by the waveguide to the processing node.
摘要:
A non-volatile field-effect device. The non-volatile field-effect device includes a source, a drain, a channel-formation portion and a memristive gate. The channel-formation portion is disposed between and coupled with the source and the drain. The memristive gate is disposed over the channel-formation portion and coupled with the channel-formation portion. The memristive gate includes a plurality of mobile ions and a confinement structure for the plurality of mobile ions. Moreover, the memristive gate is configured to switch the channel-formation portion from a first conductivity state to a second conductivity state in response to migration of the plurality of mobile ions within the confinement structure.
摘要:
A non-volatile field-effect device. The non-volatile field-effect device includes a source, a drain, a channel-formation portion and a memristive gate. The channel-formation portion is disposed between and coupled with the source and the drain. The memristive gate is disposed over the channel-formation portion and coupled with the channel-formation portion. The memristive gate includes a plurality of mobile ions and a confinement structure for the plurality of mobile ions. Moreover, the memristive gate is configured to switch the channel-formation portion from a first conductivity state to a second conductivity state in response to migration of the plurality of mobile ions within the confinement structure.
摘要:
Nanowire-based photodiodes are disclosed. The photodiodes include a first optical waveguide having a tapered first end, a second optical waveguide having a tapered second end, and at least one nanowire comprising at least one semiconductor material connecting the first and second ends in a bridging configuration. Methods of making the photodiodes are also disclosed.
摘要:
A polarization-dependent device is provided that includes organic materials having electric dipoles. The polarization-dependent device comprises: (a) a source region and a drain region separated by a channel region having a length L, formed on a substrate; (b) a dielectric layer on at least a portion of the channel region; and (c) a molecular layer on the dielectric layer, the molecular layer comprising molecules having a switchable dipolar moiety. Addition of a gate over the molecular layer permits fabrication of a transistor, while omission of the gate, and utilization of suitable molecules that are sensitive to various changes in the environment permits fabrication of a variety of sensors. The molecular transistor and sensors are suitable for high density nanoscale circuits and are less expensive than prior art approaches.
摘要:
In accordance with the present invention, nanometer-scale reversible electronic switches are provided that can be assembled to make cross-bar circuits that provide memory, logic, and communications functions. The electronic switches, or crossed-wire devices, comprise a pair of crossed wires that form a junction where one wire crosses another at an angle other than zero degrees and at least one connector species connecting the pair of crossed wires in the junction. The junction has a functional dimension in nanometers, wherein at least one connector species and the pair of crossed wires forms an electrochemical cell. The connector species comprises a bistable molecule having a general formula given by The bistable molecules evidence high switching speed. Such molecules are essentially stable against switching due to thermal fluctuations.
摘要:
A dynamic optical crossbar array includes a first set of parallel transparent electrode lines, a bottom set of parallel electrode lines that cross said transparent electrode lines, and an optically variable material disposed between said first set of transparent electrode lines and said bottom set of electrode lines.
摘要:
A holographic mirror 10 for re-directing an optical signal that includes a base 14 having an outer surface 16, and a plurality of discrete nano-structures 12 formed into the outer surface of the base. Each nano-structure has an out-of-plane dimension 20 that is within an order of magnitude of one or both in-plane dimensions 22. The plurality of nano-structures are configured in a repeating pattern with a predetermined spacing 18 between nano-structures for re-directing an optical signal.
摘要:
An apparatus for performing a sensing application includes a reservoir to contain a solution, a dispenser to dispense the solution from the reservoir, and a substrate having a plurality of nano-fingers positioned to receive the dispensed solution, in which the plurality of nano-fingers are flexible, such that the plurality of nano-fingers are configurable with respect to each other. The apparatus also includes an illumination source to illuminate the received solution, an analyte introduced around the plurality of nano-fingers, and the plurality of nano-fingers, in which light is to be emitted from the analyte in response to being illuminated. The apparatus further includes a detector to detect the light emitted from the analyte.