摘要:
The invention relates to an organic light-emitting diode (OLED) having an improved lifetime and improved transport of negative charge carriers. The organic light-emitting diode is based on an organic semiconductor material, in which the transport of negative charge carriers and stability with respect to reduction is achieved with triarylated Lewis acid units, in particular perarylated borane units. This leads to an improved lifetime of the emission layer which in turn increases the lifetime of the component and eliminates the need for correcting brightness during operation. Furthermore, the invention relates to organic light-emitting diodes in which the position of the emission zone in the emitter layer and the color of the emission can be influenced in a targeted manner through triarylated Lewis acids such as perarylated borane units.
摘要:
An organic electronic device comprising: a substrate; (1), a first electrode; (2), a second electrode (4); and an electron-conducting region (3A, 3B) which is arranged between the first and; second electrodes and comprises an organic matrix material (3B) and a salt (3A) which comprises a metal cation and an at least trivalent anion.
摘要:
A dopant composition for organic semiconductors is an electron acceptor characterized by an evaporation point above 150° C. or a glass phase. The dopant composition includes a compound represented by structural formula (1): wherein R1 to R5 are independently hydrogen, chlorine, fluorine, nitro, or cyano; or a phenyl or annulated aromatic group optionally substituted with chlorine or fluorine. Also included are doped organic semiconductors and organic electronic components comprising the dopant composition, and methods of preparing the doped organic semiconductor.
摘要:
The invention relates to a material for applying thin organic layers having a conductivity that can be set in a defined manner. The material comprises at least one mixture consisting of two different fractions of a functional polymer, preferably in a solvent, and is applied, for example, in the form of a thin and low-conductive functional layer of an organic light-emitting diode (OLED) by means of different application techniques.
摘要:
New materials for the n-doping of the elctron-transporting layer in organic electronic components, their utilization, and organic electronic componentsThe invention pertains to new materials based on sterically inhibited donor arylboranes for the improvement of electron injection and electron transport in organic electronic components like organic light-emitting diodes (OLED's), organic field effect transistors (OFET's), and on organic photovoltaics based components, in particular, organic solar cells.
摘要:
A solution-processed organic electronic structural element has an improved electrode layer. Located between the active organic layer and the electrode layer there is either an interface or an interlayer containing a cesium salt.
摘要:
An organic light emitting diode (OLED) having an improved service life and improved transport of negative charge carriers. The organic light emitting diode based on an organic semiconductor material in which the transport of negative charge carriers and the stability with respect to reduction are determined by azahetarylene/Lewis acid complex units. This leads to an improved service life of the emission layer, which firstly increases the service life of the component and avoids readjustment of the brightness during operation. Organic light emitting diodes are disclosed in which the position of the emission zone in the emitter layer and the color of the emission can be specifically influenced by azahetarylene/Lewis acid complex units.
摘要:
The invention pertains to new materials based on donor carbene intermediates for the improvement of electron injection and electron transport in organic electronic components like organic light-emitting diodes (OLED's), organic field effect transistors (OFET's), and components based on organic photovoltaics, in particular organic solar cells.
摘要:
The invention relates to luminophores having semiconducting properties and to the production and use thereof in organic luminous diodes (OLEDS) and organic solar cells. The novel materials are easy to prepare and exhibit excellent current density and efficiency when used in organic luminous diodes.
摘要:
A process is provided for producing a doped organic semiconductive layer, comprising the process steps of A) providing a matrix material, B) providing a dopant complex, and C) simultaneously applying the matrix material and the dopant complex to a substrate by vapor deposition, wherein, in process step C), the dopant complex is decomposed and the pure dopant is intercalated into the matrix material.