Abstract:
A multi-phase lubricant composition useful in a process for lubricating one or more operating components which are exposed to an operating condition change is described. Under a condition at which the lubricants are at least partially miscible, the phases combine to provide a lubricant having a physical property which is modified to be more appropriate for lubricating under the new condition, such as a higher viscosity. Typically the lubricants are at least partially miscible at an elevated temperature and at least partially immiscible at lower temperatures. A density difference between the phases is preferred for ease of separating the phases. The composition is preferably a combination of a hydrocarbon oil and a polyalkylene glycol such as polypropylene glycol.
Abstract:
A hydrocarbon oligomer and a process for its production is disclosed that is useful as a pour point depressant and as a combination pour point depressant and viscosity index improver for mineral oil or synthetic oil. The oligomer is also useful in modifying wax crystal formation at low temperature when added to distillate fuels. The oligomer is a near linear copolymer of a mixture of ethylene and C.sub.3 -C.sub.28 1-alkenes, or only 1-alkenes, wherein a large proportion of the pendant alkyl groups of the recurring 1-alkene monomer units contain between 14 and 22 carbon atoms. The oligomer is produced by polymerization of mixed 1-alkenes with reduced chromium oxide catalyst on silica support.
Abstract:
A method and apparatus for measuring thickness and traction properties of elastohydrodynamic lubricant (EHL) films is described. The apparatus utilizes at least one ball or roller loaded against the internal diameter of a transparent ring having a larger radius than said ball or roller. A lubricant is placed between the rotating roller and ring thereby forming an EHL film where the ball and ring contact. Roller and ring rotating speeds are controlled to obtain different amounts of relative sliding motion between their surfaces. Contact between the surfaces and the resultant film are observed via the transparent ring which allows optical measurements of lubricating film thickness. Traction forces generated during contact are measured by any suitable force measuring device.
Abstract:
A novel composition is disclosed that is particularly useful as a lubricant viscosity index improver. The composition comprises branched C.sub.30 -C.sub.10000 hydrocarbons that have a branch ratio of less than 0.19 and viscosity at 100.degree. C. between 725 cS and 15,000 cS. The novel compositions comprise the product of the oligomerization of C.sub.6 to C.sub.20 alpha-olefin feedstock, or mixtures thereof, under oligomerization conditions at a temperature between -20.degree. C. and +90.degree. C. in contact with a reduced valence state Group VIB metal catalyst on porous support. The compositions have viscosities at 100.degree. C. between 725 cS and 15,000 cS. Using the foregoing compositions in admixture with mineral oil and synthetic lubricants provides novel lubricant blends that show an elevated viscosity index. The mixtures also show an increased stability to shear stress at high temperture with all blends notable by exhibiting Newtonian flow.
Abstract:
Disclosed is a lubricant composition made up to a lubricant and an oxidized sulfurized isobutylene prepared by reacting a mild oxidizing agent with commercially available sulfurized isobutylene. The lubricant composition imparts improved roller bearing life.
Abstract:
A method and system for authenticating answers to Domain Name System (DNS) queries originating from recursive DNS servers are provided. A verification component provides a verification that a DNS query originated from the recursive DNS server. An authoritative DNS server receives the query via a network, such as the Internet, and provides an answer to the query to an authentication component. The authentication component then provides an authentication, such as a digital signature, which confirms that the received answer was provided by the authoritative DNS server, and then communicates the answer and the authentication to the verification component via the network. The verification component then verifies that the authentication corresponds to the received answer and sends the answer to the recursive DNS server. When the verification component receives an answer in the absence of a corresponding authentication, the verification component drops the answer.
Abstract:
Compositions comprising are provided wherein RF is a fluorine containing moiety comprising (CF3)2CFCH2(CF3)CH—, (CF3)2CFCH2((CF3)2CF)CH—, (CF3)2CFCH2((CF3)2CH)CH—, (CF3)2CHCH2((CF3)2CF)CH—, ((CF3)2CFCH2)2CH—, (CF3)2CFCH2CF—, (CF3)2CF—, (CF3)2CH—, CF3—, or CnF2n+1—, n being an integer from 2 to 20; R1 is F or H; R2 comprises (CF3)2CF—, (CF3)2CH—, CF3—, F, or H; and R3 comprises (CF3)2CF—, (CF3)2CH—, CF3—, F, or H, such compositions can produced according to processes, and utilized to prevent combustion utilizing systems.
Abstract:
Disclosed in one embodiment is a hydrocarbon blend made from 0.001 to 10 wt % of at least one poly-α-olefin, by weight of the blend, the at least one poly-α-olefin having a Kv100 within the range of from 10 to 3000 cSt and a molecular weight distribution within the range of from 1.0 to 4.5; and a base stock having a Kv100 below 20.0 cSt; wherein the at least one poly-α-olefin is present in an amount sufficient to lower the pour point of the blend by at least 5° C. relative to the pour point of the base stock. In certain embodiments the blend is formed by (a) reacting a catalyst composition and a feed containing at least two sets of α-olefins, wherein the first set of α-olefins is selected from C4 to C12 α-olefins and the second set of α-olefins is selected from C14 or larger α-olefins. The α-olefin feed may have a number average carbon number of at least 8 carbon atoms or greater.
Abstract:
Disclosed is a process for the manufacture of 2,3,3,3-tetrafluoropropene comprising: (a) contacting 1,1,1,2,3-pentafluoropropane with a catalyst comprised of chromium (III) oxide and from 0.1% to 2% of an alkali metal disposed on the surface of said catalyst, to produce a product mixture comprising 2,3,3,3-tetrafluoropropene and hydrogen fluoride; and (b) recovering said 2,3,3,3-tetrafluoropropene from the product mixture produced in (a).