ADAPTIVE ANTENNA TUNING SYSTEM
    33.
    发明公开

    公开(公告)号:US20230170927A1

    公开(公告)日:2023-06-01

    申请号:US18158441

    申请日:2023-01-23

    Applicant: Apple Inc.

    CPC classification number: H04B1/38 H01Q23/00

    Abstract: A radio frequency device has a multifunctional tuner that stores measurements of reflection coefficient parameter in a register. The radio frequency device also has a transceiver that has a transmitter. The transceiver may detect a transmitter signal from the transmitter to an antenna in an initial tuning state and then determine whether the transmitter signal is stable. In response to the transmitter signal being stable, the transceiver may measuring the reflection coefficient parameters at the multifunctional tuner. Furthermore, the radio frequency device has a baseband controller that has a memory to store instructions and a processor to execute the instructions. The instructions cause the processor to determine an antenna impedance based on the reflection coefficient parameters, and in response to determining that the antenna impedance is greater than or less than a threshold antenna impedance, iteratively tune the antenna using the multifunctional tuner.

    ADAPTIVE ANTENNA TUNING SYSTEM
    36.
    发明申请

    公开(公告)号:US20210218430A1

    公开(公告)日:2021-07-15

    申请号:US16898069

    申请日:2020-06-10

    Applicant: Apple Inc.

    Abstract: A radio frequency device has a multifunctional tuner that stores measurements of reflection coefficient parameter in a register. The radio frequency device also has a transceiver that has a transmitter. The transceiver may detect a transmitter signal from the transmitter to an antenna in an initial tuning state and then determine whether the transmitter signal is stable. In response to the transmitter signal being stable, the transceiver may measuring the reflection coefficient parameters at the multifunctional tuner. Furthermore, the radio frequency device has a baseband controller that has a memory to store instructions and a processor to execute the instructions. The instructions cause the processor to determine an antenna impedance based on the reflection coefficient parameters, and in response to determining that the antenna impedance is greater than or less than a threshold antenna impedance, iteratively tune the antenna using the multifunctional tuner.

    Electronic devices having indirectly-fed slot antenna elements

    公开(公告)号:US10862216B1

    公开(公告)日:2020-12-08

    申请号:US16457515

    申请日:2019-06-28

    Applicant: Apple Inc.

    Abstract: An electronic device may include ground structures and peripheral conductive housing structures defining opposing edges of a slot element. A monopole element may overlap the slot element. The monopole element may be directly fed radio-frequency signals by an antenna feed coupled to the monopole element. The monopole element may radiate the radio-frequency signals in a first frequency band while indirectly feeding the radio-frequency signals to the slot element via near-field electromagnetic coupling. The slot element may radiate the radio-frequency signals in a second frequency band that is lower than the first frequency band. The monopole element and the slot element may collectively form a multi-band antenna that exhibits a relatively wide bandwidth.

    Electronic device having multiband antenna with embedded filter

    公开(公告)号:US10290941B2

    公开(公告)日:2019-05-14

    申请号:US15008130

    申请日:2016-01-27

    Applicant: Apple Inc.

    Abstract: An electronic device may have a display in a housing with a metal wall. An antenna may have an antenna ground formed from the wall and an antenna resonating element. Transceiver circuitry may be coupled to an antenna feed that extends between the antenna resonating element and the antenna ground. A return path may extend between the antenna resonating element and the antenna ground in parallel with the feed. The antenna resonating element may have segments that are coupled by a frequency dependent filter. At a first frequency, the filter may have a low impedance so that the antenna resonating element has a first effectively length. At a second frequency that is greater than the first frequency, the filter may have a high impedance so that the antenna resonating element has a second effective length that is shorter than the first effective length.

Patent Agency Ranking