Abstract:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The liner for the trench is formed from a semiconductor or metal layer which is deposited in a low temperature process which reduces germanium outgassing. The low temperature process can be a CVD process.
Abstract:
A semiconductor substrate is provided having an insulator thereon with a semiconductor layer on the insulator. A deep trench isolation is formed, introducing strain to the semiconductor layer. A gate dielectric and a gate are formed on the semiconductor layer. A spacer is formed around the gate, and the semiconductor layer and the insulator are removed outside the spacer. Recessed source/drain are formed outside the spacer.
Abstract:
A fabrication system utilizes a protocol for removing germanium from a top surface of a wafer. An exposure to a gas, such as a gas containing the hydrochloric acid can remove germanium from the top surface. The protocol can allow shared equipment to be used in both Flash product fabrication lines and strained silicon (SMOS) fabrication lines. The protocol allows better silicidation in SMOS devices.
Abstract:
A semiconductor device formed on a semiconductor substrate having an active region and a method of making the same is disclosed. The semiconductor device includes a dielectric layer interposed between a gate electrode and the semiconductor substrate. Further, the semiconductor device includes graded dielectric constant spacers formed on sidewalls of the dielectric layer, sidewalls of the gate electrode and portions of an upper surface of the semiconductor substrate. The dielectric constant of the graded dielectric constant spacers decreases in a direction away from the sidewalls of the dielectric layer.
Abstract:
A method for fabricating short channel field effect transistors with dual gates and with a gate dielectric having a high dielectric constant. The field effect transistor is initially fabricated to have a sacrificial gate dielectric and a dummy gate electrode. Any fabrication process, such as an activation anneal or a salicidation anneal of the source and drain of the field effect transistor, using relatively high temperature is performed with the field effect transistor having the sacrificial gate dielectric and the dummy gate electrode. The dummy gate electrode and the sacrificial gate dielectric are etched from the field effect transistor to form a gate opening. A layer of dielectric with high dielectric constant is deposited on the side wall and the bottom wall of the gate opening, and a crystallization enhancing layer is deposited on the bottom wall of the gate opening. Amorphous gate electrode material, such as amorphous silicon, is deposited to fill the gate opening after the crystallization enhancing layer has been deposited. Dual gates for both an N-channel field effect transistor and a P-channel field effect transistor are formed by doping the amorphous gate electrode material with an N-type dopant for an N-channel field effect transistor, and by doping the amorphous gate electrode material with a P-type dopant for a P-channel field effect transistor. The amorphous gate electrode material in the gate opening is then annealed at a relatively low temperature, such as 500° Celsius, using an enhanced crystallization process to convert the amorphous gate electrode material, such as amorphous silicon, into polycrystalline gate electrode material, such as polycrystalline silicon. Thus, relatively low temperatures are used in the present invention to preserve the integrity of the gate dielectric having the high dielectric constant.
Abstract:
Low resistance contacts are formed on source/drain regions and gate electrodes by selectively depositing a reaction barrier layer and selectively depositing a metal layer on the reaction barrier layer. Embodiments include selectively depositing an alloy of cobalt and tungsten which functions as a reaction barrier layer preventing silicidation of a layer of nickel or cobalt selectively deposited thereon. Embodiments also include tailoring the composition of the cobalt tungsten alloy so that a thin silicide layer is formed thereunder for reduced contact resistance.
Abstract:
A semiconductor device having a transistor or capacitor with an ultra-thin oxide, which is thinner than 10 angstrom in thickness, is manufactured by eliminating a gate oxidation step in the processing and using the polysilicon reoxidation step to create the ultra-thin gate oxide by diffusion after formation of the gate.
Abstract:
An ultra-large scale CMOS integrated circuit semiconductor device is processed after the formation of the gates and gate oxides by N-type dopant implantation to form N-type shallow source and drain extension junctions. Spacers are formed for N-type dopant implantation to form N-type deep source and drain junctions. A higher temperature rapid thermal anneal then optimizes the NMOS source and drain extension junctions and junctions, and the spacers are removed. A thin oxide spacer is used to displace P-type dopant implantation to P-type shallow source and drain extension junctions. A nitride spacer is then formed for P-type dopant implantation to form P-type deep source and drain junctions. A second lower temperature rapid thermal anneal then independently optimizes the PMOS source and drain junctions independently from the NMOS source and drain junctions.
Abstract:
A method (100) of forming a transistor (50, 80) includes forming a gate oxide (120) over a portion of a semiconductor material (56, 122) and forming a doped polysilicon film (124) having a dopant concentration over the gate oxide (122). Subsequently, the doped polysilicon film (124) is etched to form a gate electrode (52) overlying a channel region (58) in the semiconductor material (56, 122), wherein the gate electrode (52) separates the semiconductor material into a first region (60) and a second region (68) having the channel region (58) therebetween. The method (100) further includes forming a drain extension region (64) in the first region (60) and a source extension region (72) in the second region (68), and forming a drain region (62) in the first region (60) and a source region (70) in the second region (68). The source/drain formation is such that the drain and source regions (62, 70) have a dopant concentration which is less than the polysilicon film (124) doping concentration. The lower doping concentration in the source/drain regions (62, 70) lowers the junction capacitance and provides improved control of floating body effects when employed in SOI type processes.
Abstract:
A method in the manufacture of ultra-large scale integrated circuit semiconductor devices suppresses boron loss due to segregation into the screen oxide during the boron activation rapid thermal anneal. A nitridation of the screen oxide is used to incorporate nitrogen into the screen oxide layer prior to boron implantation for ultra-shallow, source and drain extension junctions. A second nitridation of a second screen oxide is used prior to boron implantation for deeper, source and drain junctions. This method significantly suppresses boron diffusion and segregation away from the silicon substrate which reduces series resistance of the complete source and drain junctions.