Abstract:
A bearing arrangement for a wobble plate piston pump includes first, second, third, and fourth bearing assemblies. The first and second bearing assemblies support the drive shaft portion for rotation within the housing about the central longitudinal axis, while the third and fourth bearing assemblies support the load plate for rotation relative to the offset shaft portion of the shaft. The second bearing assembly is distally disposed from the first, the third disposed distally to second, and the fourth disposed distally to third. The fourth bearing assembly is the most distally disposed bearing assembly along the shaft.
Abstract:
A fuel injector comprises a liquid fuel cavity and a gas fuel cavity disposed within an injector cavity housing a liquid needle valve stem and a gas needle valve stem, respectively. The gas needle valve stem includes a guide stem portion distal to the injector tip and a check proximal to the injector tip. A drain passage terminates in a drain annulus groove disposed in a guide cavity wall of a gas valve guide cavity. The gas valve guide cavity houses the guide stem portion defining a clearance between the guide cavity wall below the drain annulus groove and the guide stem portion. The liquid fuel from the drain passage flows to the gas needle valve stem and an inner surface of the gas fuel cavity, through the clearance. The liquid fuel drained through the clearance collects in a plurality of grooves on the check.
Abstract:
A compression ignition engine is fueled from common rail fuel injectors that predominately inject natural gas fuel that is compression ignited with a small pilot injection of liquid diesel fuel. Prior to servicing the engine, a service tool may establish a communication link with an electronic controller that controls operation of the engine. Pressure information for a gaseous fuel common rail and a liquid fuel common rail are displayed with the service tool, when the engine is stopped, in order to determine whether the rails are completely depressurized indicating that it is then o.k. to perform servicing tasks.
Abstract:
A gas fuel system for an engine is disclosed. The gas fuel system includes a fuel tank configured to supply cryogenic fuel. A cryogenic pump is configured to pressurize the cryogenic fuel received from the fuel tank. A heat exchanger is configured to receive the pressurized cryogenic fuel and an engine coolant. Further, the engine coolant flows through the heat exchanger to vaporize the pressurized cryogenic fluid. The gas system further includes a controller configured to receive a signal indicative of temperature of the engine coolant. Further, the controller sends a signal to impose one or more parasitic loads on the engine based on the temperature of the engine coolant.