Abstract:
A cryogenic fluid pump includes an outlet tube extending along the pump centerline, the outlet tube having an outlet passage that is fluidly in communication with the combined outlet and with a pump outlet opening, and a shroud that extends concentrically along the outlet tube and has an inner diameter that is larger than an outer diameter of the outlet tube such that a gap is formed in a radial direction between an inner surface of the shroud and an outer surface of the outlet tube, the gap extending along at least a portion of the outlet tube.
Abstract:
A pump plunger is disclosed. The plunger may include a proximal end and a distal end opposite the proximal end. The plunger may also include a body portion extending between the proximal end and a second transition datum, and additionally include a transition section extending between a first transition datum and the second transition datum. The transition section may have a non-linear geometric profile. A first shoulder portion may be positioned adjacent to the transition section that may extend between the second transition datum and a third datum. The third datum may be positioned radially inward of the second transition datum. The plunger may also include a tip portion positioned adjacent to the first shoulder portion that may extend between the third datum and a fourth datum positioned at the distal end. The fourth datum may be positioned radially inward of the third datum.
Abstract:
A valve assembly for a fuel pump is disclosed. In certain aspect, the valve assembly includes a housing defining a valve chamber, a valve inlet in fluid communication with the valve chamber, a valve outlet in fluid communication with the valve chamber, a valve seat; a valve body movably disposed within the valve chamber, a retainer sealingly engaging the housing and defining a cavity between the base portion of the valve body and the retainer, wherein the retainer comprises one or more control orifices formed therein and configured to provide fluid communication to the cavity to regulate a position of the valve body based on at least a pressure difference between the valve chamber and the cavity, and a spring member disposed between the retainer and the valve body, wherein the spring member is configured to bias the valve body.
Abstract:
A conditioning system for a liquefied gas includes a source of liquefied gas, the liquefied gas provided from the source at a first temperature. A first heater is disposed to heat a flow of the liquefied gas to a second temperature. An accumulator is disposed to collect and store a quantity of the liquefied gas at the second temperature. A second heater is disposed to receive a flow of gas from the accumulator and the first heater, the second heater operating to heat the gas to a third temperature and provide the heated gas at the third temperature to a gas outlet.
Abstract:
A linearly actuated hydraulic piston pump is provided. The pump includes a piston disposed between a first section and a second section of a piston chamber. The pump also includes a control valve having a valve body defining a valve chamber therein. The control valve also includes an inlet port, a first port, a regeneration port, a second port, and a spool. The spool in a first spool position fluidly couples a pressurized fluid source to the first section via the inlet port and the first port, and fluidly couples an accumulator to the second section via the regeneration port and the second port. The spool in the second spool position fluidly couples the first section to a drain via the first port and a drain port, and fluidly couples the second section to the pressurized fluid source via the inlet port and the second port.
Abstract:
A bearing arrangement for a wobble plate piston pump includes first, second, third, and fourth bearing assemblies. The first and second bearing assemblies support the drive shaft portion for rotation within the housing about the central longitudinal axis, while the third and fourth bearing assemblies support the load plate for rotation relative to the offset shaft portion of the shaft. The second bearing assembly is distally disposed from the first, the third disposed distally to second, and the fourth disposed distally to third. The fourth bearing assembly is the most distally disposed bearing assembly along the shaft.
Abstract:
A valve assembly for a fuel pump is disclosed. In certain aspect, the valve assembly includes a housing defining a valve chamber, a valve inlet in fluid communication with the valve chamber, a valve outlet in fluid communication with the valve chamber, a valve seat; a valve body movably disposed within the valve chamber, a retainer sealingly engaging the housing and defining a cavity between the base portion of the valve body and the retainer, wherein the retainer comprises one or more control orifices formed therein and configured to provide fluid communication to the cavity to regulate a position of the valve body based on at least a pressure difference between the valve chamber and the cavity, and a spring member disposed between the retainer and the valve body, wherein the spring member is configured to bias the valve body.
Abstract:
A fuel injector (1) is provided which comprises a valve member (11), a valve member guide (12) and a spring chamber (40). Discharge of fuel out of a fuel injector outlet (21) is controlled by movement of the valve member (11) within a bore (23) of the valve member guide (12). The spring chamber (40) contains a biasing member (50), for example a compression spring, which biases the valve member (11) into contact with a valve seat (20) when in a closed configuration.A fuel supply passage (80) is provided, which by-passes the spring chamber (40), to direct a flow of the fuel to an outlet chamber (22) of the fuel injector (1) and a cleaning fluid supply passage (90) is provided to supply a pressurised cleaning fluid to a second end (25) of the bore (23) to restrict leakage of the fuel from the outlet chamber (22) towards the second end (25) of the bore (23) along a clearance (29) extending between the valve member (11) and the valve member guide (12).
Abstract:
A machine includes a compression ignition engine fueled from common rail fuel injectors that predominately inject natural gas fuel that is compression ignited with a small pilot injection of liquid diesel fuel. When an engine shutdown command is communicated to an electronic controller, the supply of gaseous fuel to the gas rail is stopped and the gaseous fuel common rail is depressurized by continuing to run the engine and inject gaseous and liquid fuels while commanding a liquid pressure greater than the gas pressure. After the gas rail pressure has achieved an acceptable shutdown pressure, the engine is stopped. The gas rail pressure is then reduced to atmospheric pressure followed by the liquid fuel common rail being reduced to atmosphere pressure after stopping the engine.
Abstract:
A dual fuel common rail system may be operated in a regular mode in which a relatively large charge of gaseous fuel is ignited by compression igniting a relatively small injection quantity of liquid diesel fuel. The dual fuel system may be operated in a single fuel limp home mode in which liquid diesel fuel is injected at higher pressures. Over pressurization of the gaseous fuel side of the fuel system due to leaked liquid fuel is avoided by regularly injecting leaked liquid fuel, but not gaseous fuel, from the gaseous nozzle outlet set during the limp home mode of operation.