Abstract:
This fuel pressure accumulating device comprises: a fuel pressure accumulating unit inside which a pressure accumulating space is provided; a fuel inflow unit which is fitted to the fuel pressure accumulating unit and through which fuel can flow into the pressure accumulating space; a fuel outflow unit which is fitted to the fuel pressure accumulating unit and through which the fuel can flow from the pressure accumulating space; and a fuel storage unit which is provided in the fuel pressure accumulating unit, and which stores fuel that has leaked to a position in the fuel pressure accumulating unit where the fuel inflow unit is fitted, and a position in the fuel pressure accumulating unit where the fuel outflow unit is fitted.
Abstract:
A fuel system includes a fuel injector having a fuel passage and a purging fluid passage formed therein. A nozzle tip inner surface defines a sac forming a blind end of the fuel passage in the fuel injector. A coaxial concentric check assembly includes a purging check movable to admit a purging fluid such as pressurized air into the fuel passage to purge the sac of fuel. Reduced injector dribble is observed from the purging of fuel.
Abstract:
A fuel injection system for a reciprocating engine, comprising injectors for injecting pressurized fuel into the cylinders of the engine, a high pressure pump for pressurizing fuel to be injected, a supply pipe for feeding fuel from the high pressure pump toward the injectors and feed pipes for feeding fuel from the supply pipe to the injectors. The first ends of the feed pipes are connected to the injectors and the second ends to the supply pipe. Each fuel injector is provided with a pressure accumulator.
Abstract:
The present invention relates to a 3-way valve assembly (102; 202; 302) for a fuel injector (101; 201; 301). The valve assembly (102; 202; 302) includes a valve body (103; 203; 303), a movable valve member (104; 204; 304), and an armature (113; 213; 313) for actuating the valve member (104; 204; 304). The armature (113; 213; 313) is disposed in an armature cavity (115; 215; 315). The valve member (104; 204; 304) is configured to control an operating pressure in a control chamber (105). The valve body (103; 203; 303) includes a bore (117; 217; 317) in which the valve member (104; 204) is disposed. A leak vent (121; 221) is provided for venting fuel leaking through the bore (117; 217) past said valve member (104; 204). In an alternate embodiment, a partitioning member (333) is disposed in the armature cavity (315).
Abstract:
The invention relates to a fuel injection device for injecting fuel into a combustion chamber of an internal combustion engine, comprising an end (6) that is located at a distance from the combustion chamber and has at least one electric connection (33) and at least one return flow connection (40). In order to create a fuel injection device (1) that has a simple design and can be produced cost-effectively, the return flow connection (40) and the electric connection (33) are integrated in a common connecting member.
Abstract:
A discharge valve (30) is provided in a high-pressure fuel passage (31) to allow fuel to pass through the discharge valve (30) only in a direction from a high-pressure fuel pump (20) toward a delivery pipe (50). A communication passage (41) with an orifice (42) is formed integrally with the discharge valve (30) in parallel with the discharge valve (30) to connect areas upstream and downstream of the discharge valve (30). When a fuel pressure in the delivery pipe (50) is increased to a target pressure using the high-pressure fuel pump (20), an amount of the fuel, which does not interfere with an increase in the fuel pressure, flows through the orifice (42). A check valve (40) is provided in the communication passage (41), and opened to allow the fuel to pass through the check valve (40) only in the direction from the delivery pipe (50) toward the high-pressure fuel pump (20), when the fuel pressure is higher than a first predetermined pressure.
Abstract:
A flow control system for a fuel injector for an internal combustion engine is provided and includes an inlet port, an outlet, a return port, a 2-way control valve including a control valve member, a shuttle valve and a main valve. The control valve includes a first seat, a first resilient arrangement configured to force the control valve member towards the seat so as to close the control valve, and a first abutment that limits the lift of the control valve member away from the first seat. The first seat of the control valve is slidably arranged in the shuttle control chamber. An end stop for the first seat is provided such that the pressure in a shuttle control chamber tends to move the first seat towards the end stop. The first seat, upon its mechanical contact with a valve member is able to transmit at least a part of the force of the resilient means onto a shuttle valve body in the opening direction of the shuttle valve.
Abstract:
A flow limiter for a fuel system is provided. The flow limiter includes a self-contained portion that enables testing of the flow limiter prior to assembly into a fuel system. A housing of the flow limiter is arranged to provide reduced or no pressure differential across a wall of the housing, permitting the housing to be reduced in size and thickness and providing improved consistency of operation.
Abstract:
This disclosure provides a fuel line assembly for use with an internal combustion engine, an internal combustion engine including such as fuel line assembly, and a method for providing leak containment and detection in a fuel system, each of which include a double-walled fuel line including a high pressure fuel line component. The double-walled fuel line includes a high pressure fuel line, a jacket surrounding the high pressure fuel line, and a low pressure passage between the high pressure fuel line and the jacket. A fuel line nut includes a main body that houses a portion of the high pressure fuel line, and a first end portion supporting an enlarged end portion of the high pressure fuel line protruding from the first end portion. A second end portion of the fuel line nut sealingly connects to the jacket to extend the low pressure passage into an area between the main body and the housed high pressure fuel line. A fuel line connector mechanically and sealingly engages with the fuel line nut to house the supported enlarged end portion of the high pressure fuel line. The fuel line connector can connect to a single-walled high pressure tube provided in a bore of the cylinder head between an inlet of a fuel injector and the environment exterior of the cylinder head.
Abstract:
A dual fuel system for an engine includes a plurality of fuel injectors that each include an injector body with a tip component defining a plurality of gas nozzle outlets and a plurality of liquid nozzle outlets positioned for direct injection into one of the engine cylinders. Each of the fuel injectors is fluidly connected to a gaseous fuel common rail through a quill and an outer passage defined between an inner tube and an outer tube. Each of the fuel injectors is fluidly connected to a liquid fuel common rail through the quill and an inner passage defined by the inner tube. Each combination of an inner tube and outer tube extend into the engine housing between the quill and one of the fuel injectors. Each of the inner tubes extends through one of the outer tubes and is compressed between a conical seat on the quill and a conical seat on one of the fuel injectors.