Abstract:
This invention relates to materials and methods for gene editing in mammalian cells, and more particularly to methods for gene editing using DNA-guided Argonaute (Ago) interference systems (DAIS) in T-cells.
Abstract:
The present invention relates to a method for the generation of compact Transcription Activator-Like Effector Nucleases (TALENS) that can efficiently target and process double-stranded DNA. More specifically, the present invention concerns a method for the creation of TALENs that consist of a single TALE DNA binding domain fused to at least one catalytic domain such that the active entity is composed of a singe polypeptide chain for simple and efficient vectorization and does not require dimerization to target a specific single double-stranded DNA tar et sequence of interest and process DNA nearby said DNA target sequence. The present invention also relates to compact TALENs, vectors, compositions and kits used to implement the method.
Abstract:
The present invention concerns new modular base-per-base specific nucleic acid binding domains (MBBBD) derived from newly identified proteins from the bacterial endosymbiont Burkholderia Rhizoxinica and their use for engineering nucleic acid processing enzymes, such as specific endonucleases or transcription activators.
Abstract:
The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are characterized in that the expression of beta 2-microglobulin (B2M) and/or class II major histocompatibility complex transactivator (CIITA) is inhibited, e.g., by using rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding B2M and/or CIITA, or by using nucleic acid molecules which inhibit the expression of B2M and/or CIITA. In order to further render the T-cell non-alloreactive, at least one gene encoding a component of the T-cell receptor is inactivated, e.g., by using a rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding said TCR component.
Abstract:
The invention pertains to the field of adaptive cell immunotherapy. It provides with the genetic insertion of exogenous coding sequence(s) into genetically engineered immune cells to prevent cytokine release syndrome to arise during the course of cell therapy. These exogenous coding sequences are more particularly soluble human polypeptides placed under the transcriptional control of endogenous gene promoters that are sensitive to immune cells activation. Such method allows the production of safer immune primary cells of higher therapeutic potential.
Abstract:
The present invention generally relates to the field of genome engineering (gene editing), and more specifically to gene therapy for the treatment of Hyper-lgE syndrome (HIES). In particular, the present invention provides means and methods for genetically modifying HSCs or T-cells involving gene editing reagents, such as TALE-nucleases, that specifically target an endogenous STATS gene comprising at least one mutation causing Hyper-lgE syndrome (HIES), thereby allowing the restoration of the normal cellular phenotype. The present invention also provides populations of engineered HSCs or T-cells which comprise cells comprising an exogenous polynucleotide sequence comprising at least a partial or complete sequence of a functional STATS gene, said exogenous polynucleotide sequence being integrated in an endogenous STATS gene comprising at least one mutation causing Hyper-lgE syndrome (HIES), resulting in the expression of a functional STATS polypeptide. The present invention further provides pharmaceutical compositions comprising the cell populations of the invention, and their use in gene therapy for the treatment of Hyper-lgE syndrome (HIES).
Abstract:
The present invention relates to methods of developing genetically engineered, preferably non-alloreactive T-cells for immunotherapy. This method involves the use of RNA-guided endonucleases, in particular Cas9/CRISPR system, to specifically target a selection of key genes in T-cells. The engineered T-cells are also intended to express chimeric antigen receptors (CAR) to redirect their immune activity towards malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer and viral infections.
Abstract:
The present invention relates to an engineered immune cell endowed with CD22 Chimeric Antigen Receptors (CD22 CAR) with a deletion in the TRAC gene that is able to redirect immune cell specificity and reactivity toward selected tumor cells. The engineered immune cells endowed with such CARs are particularly suited for treating relapsed refractory CD22 expressing cancers.
Abstract:
The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are characterized in that the expression of beta 2-microglobulin (B2M) and/or class II major histocompatibility complex transactivator (CIITA) is inhibited, e.g., by using rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding B2M and/or CIITA or by using nucleic acid molecules which inhibit the expression of B2M and/or CIITA. In order to further render the T-cell non-alloreactive, at least one gene encoding a component of the T-cell receptor is inactivated, e.g., by using a rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding said TCR component. In addition, expression of immunosuppressive polypeptide can be performed on those modified T-cells in order to prolong the survival of these modified T cells in host organism. Such modified T-cell is particularly suitable for allogeneic transplantations, especially because it reduces both the risk of rejection by the host's immune system and the risk of developing graft versus host disease. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer, infections and auto-immune diseases.
Abstract:
The present invention is in the field of CRISPR-Cas system for genome targeting. The present invention relates to new engineered Cas9 scaffolds and uses thereof. More particularly, the present invention relates to methods for genome targeting, cell engineering and therapeutic application. The present invention also relates to vectors, compositions and kits in which the new Cas9 scaffolds of the present invention are used.