Abstract:
A unit includes circuitry configured to: receive a downlink signal; sub-divide the downlink signal into a sub-divided downlink signal having downlink signal components in a time domain, each downlink signal component corresponding to a respective sub-band; determine that at least one downlink signal component corresponds to at least one sub-band having data to be transmitted via a distributed antenna system; generate a transformed downlink signal representing the downlink signal in a frequency domain by performing a frequency transform on the downlink signal; determine that the at least one sub-band of the transformed downlink signal includes the data to be transmitted; extract the at least one sub-band from the transformed downlink signal at least in part by providing data for at least one portion of the transformed downlink signal in the frequency domain that corresponds to the at least one sub-band to the at least one remote antenna unit.
Abstract:
An interface is provided for processing digital signals in a standardized format in a distributed antenna system. One example includes a unit disposed in a distributed antenna system. The unit includes an interface section and an output section. The interface section is configured for outputting a first complex digital signal and a second complex digital signal. The first complex digital signal is generated from a digital signal in a standardized format received from a digital base station. The output section is configured for combining the first complex digital signal and the second complex digital signal into a combined digital signal. The output section is also configured for outputting the combined digital signal. The combined digital signal comprises information to be wirelessly transmitted to a wireless user device.
Abstract:
An endpoint element of a distributed antenna system includes processing circuitry configured for processing a plurality of digital signals for conditioning the signals and compression circuitry configured for compressing at least one of the digital signals according to a compression scheme to yield at least one compressed digital signal and compression settings. The digital signals are combined into a single digital stream and combined and time division multiplexed onto a serial data link with the compression settings. The digital signals are also transmitted with compression settings to another endpoint element over the serial data link.
Abstract:
A telecommunications system is provided that can re-sample a digitized signal at a resample rate that is based on one or more factors to better utilize bandwidth. The factors can include the bandwidth of the signal that the digitized signal represents, the amount of bandwidth owned or used by the carrier, the full bandwidth of the designated RF band, the bandwidth of the serial link, the frame length of the serial link, the segmentation of the frames on the serial link, and the capability of the equipment at the receiving end of a serial link. The re-sampled signal can be transmitted to another unit that is remote to the unit transmitting the signal. The other unit can include a re-sampling device that restores the re-sampled signal to a digital signal that can be converted to an analog signal for wireless transmission.
Abstract:
A communication system includes a receive antenna for receiving communication signals, processing circuitry for processing the received communication signals and repeating the signals for further transmission and at least one transmit antenna for transmitting the repeated signals. The processing circuitry utilizes configurable settings for controlling the operation of the communication system and the configurable settings are variable for varying the operation of the system. The processing circuitry is further operable for receiving inputs regarding current operating conditions of the communication system and for selectively adapting the configurable settings of the system based upon the operating condition inputs.
Abstract:
A PoE powered device and method of operation are provided. The device includes a first port unit configured to negotiate receipt of a level of PoE power from a power sourcing equipment. The power is received on a first pair of taps on a first communication port. A detection unit is configured to detect a presence of a first optional circuit load and to detect a presence of a second optional power load. A control circuit is configured to establish connectivity between a second pair of taps on the first communication port and a second powered device port unit in response to the detection unit detecting the first optional load, and further configured to establish connectivity between the second pair of taps and a third pair of taps on a pass-through communication port in response to the detection unit failing to detect the first load and detecting the second load.
Abstract:
A system is provided for adjusting power provided over a channel to a device. The system can include power sourcing equipment and a sub-system. The power sourcing equipment can provide power to a powered device via a channel. The sub-system can determine an amount by which to increase the power based on a resistance of the channel. The power sourcing equipment or the powered device can adjust the power (or load) in response to a command from the sub-system. The sub-system can include at least one measurement device and a processor. The measurement device can measure an output voltage of the power sourcing equipment, an input voltage of the powered device, and a current on the channel. The processor can determine the resistance of the channel based on the output voltage, the input voltage, and the current. The processor can output a command specifying an increase or decrease in the level of power supplied by the power sourcing equipment.
Abstract:
Embodiments are disclosed for extracting sub-bands of interest from signals in a frequency domain for transmission via a distributed antenna system. In one aspect, a transformed downlink signal is generated by performing a frequency transform on a downlink signal. The transformed downlink signal represents the downlink signal in a frequency domain. At least one sub-band of the transformed downlink signal is identified as including data to be transmitted via the distributed antenna system. The sub-band is extracted from the transformed downlink signal for transmission via the distributed antenna system.
Abstract:
Embodiments are disclosed for extracting sub-bands of interest from signals in a frequency domain for transmission via a distributed antenna system. In one aspect, a transformed downlink signal is generated by performing a frequency transform on a downlink signal. The transformed downlink signal represents the downlink signal in a frequency domain. At least one sub-band of the transformed downlink signal is identified as including data to be transmitted via the distributed antenna system. The sub-band is extracted from the transformed downlink signal for transmission via the distributed antenna system.
Abstract:
A distributed antenna system includes a master unit configured to receive at least one set of multiple input multiple output (MIMO) channel signals from at least one signal source. The master unit is configured to frequency convert at least one of the MIMO channel signals to a different frequency from an original frequency, and combine the MIMO channel signals for transmission. An optical link couples the master unit with a unit remote from the master unit for transceiving the MIMO channel signals. Conversion circuitry is configured to frequency convert at least one of the first and second MIMO channel signals from the different frequency back to an original frequency for transmission over an antenna.