摘要:
A flexible thermoelectric device and a manufacturing method thereof are provided. Flexible substrates are formed by using LIGA process, micro-electro-mechanical process or electroforming technique. The flexible substrates are used to produce thermoelectric device. The structure and the material property of the substrates offer flexible property and tensile property to the thermoelectric device. Thermal transfer enhancement structures such as thermal via or metal diffusion layer are formed on the flexible substrates to overcome the low thermal transfer property of the flexible substrates.
摘要:
A light emitting diode (LED) package structure including a first substrate, an LED chip, a second substrate, and a thermoelectric cooling device is provided. The first substrate has a first surface and a corresponding second surface. The LED chip suitable for emitting a light is arranged on the first surface of the first substrate, and is electrically connected to the first substrate. The second substrate is below the first substrate, and has a third surface and a corresponding fourth surface. The third surface faces the second surface. The thermoelectric cooling device is arranged between the second surface of the first substrate and the third surface of the second substrate for conducting heat generated by the LED chip during operation.
摘要:
Disclosed is a thermally conductive, electrically insulating composite film, including interface layers disposed on the top and bottom surface of a metal substrate, and an insulation layer. Because the film has thermal conductivity and electric insulation properties, it can be disposed between the chips of a stack chip package structure, thereby dissipating the heat in horizontal and vertical directions simultaneously.
摘要:
Package structures for integrating thermoelectric components with stacking chips are presented. The package structures include a chip with a pair of conductive through vias. Conductive elements are disposed one side of the chip contacting the pair of conductive through vias. Thermoelectric components are disposed on the other side of the chip, wherein the thermoelectric component includes a first type conductive thermoelectric element and a second type conductive thermoelectric element respectively corresponding to and electrically connecting to the pair of conductive through vias. A substrate is disposed on the thermoelectric component, wherein the thermoelectric component, the pair of conductive through vias and the conductive element form a thermoelectric current path. Therefore, heat generated from the chip is transferred outward through a thermoelectric path formed from the thermoelectric components, the conductive through vias and the conductive elements.
摘要:
A thermoelectric conversion device includes a hot terminal substrate, a cold terminal substrate and a stacked structure. The stacked structure is disposed between the hot terminal substrate and the cold terminal substrate. The stacked structure includes thermoelectric conversion layers each including a thermoelectric couple layer, a first conductive layer and a second conductive layer, a first heat-conductive and electrically insulating structure and a second heat-conductive and electrically insulating structure. Each of the thermoelectric conversion layers is arranged in the stacked structure. The first conductive layer includes first conductive materials and is arranged on tops of P/N type thermoelectric conversion elements. The second conductive layer includes second conductive materials and is arranged on bottoms of the P/N type thermoelectric conversion elements. The first heat-conductive and electrically insulating structure is connected between two adjacent first conductive layers. The second heat-conductive and electrically insulating structure is connected between two adjacent second conductive layers.
摘要:
A method of fabricating a light emitting diode package structure is provided. First, a first circuit substrate having a first surface and a corresponding second surface and a second circuit substrate having a third surface and a corresponding fourth surface are provided. The second surface and the third surface respectively have a plurality of electrodes. Then, a plurality of N-type semiconductor materials and a plurality of P-type semiconductor materials alternatively arranged on the electrodes are formed. Then, the first circuit substrate and the second circuit substrate are assembled. The two type semiconductor materials are located between the electrodes of the first circuit substrate and the second circuit substrate. The two type semiconductor materials are electrically connected to the first circuit substrate and the second circuit substrate through the electrodes. Finally, an LED chip is arranged on the first surface and electrically connected to the first circuit substrate.
摘要:
A light emitting diode (LED) package structure including a first substrate, an LED chip, a second substrate, and a thermoelectric cooling device is provided. The first substrate has a first surface and a corresponding second surface. The LED chip suitable for emitting a light is arranged on the first surface of the first substrate, and is electrically connected to the first substrate. The second substrate is below the first substrate, and has a third surface and a corresponding fourth surface. The third surface faces the second surface. The thermoelectric cooling device is arranged between the second surface of the first substrate and the third surface of the second substrate for conducting heat generated by the LED chip during operation.
摘要:
A light emitting diode (LED) package structure including a first substrate, one or more LED chips, a second substrate, and a thermoelectric cooling device is provided. The first substrate has a first surface and a corresponding second surface. The LED chip suitable for emitting a light is arranged on the first surface of the first substrate, and is electrically connected to the first substrate. The second substrate is below the first substrate, and has a third surface and a corresponding fourth surface. The third surface faces the second surface. The thermoelectric cooling device is arranged between the second surface of the first substrate and the third surface of the second substrate for conducting heat generated by the LED chip during operation.
摘要:
Package structures for integrating thermoelectric components with stacking chips are presented. The package structures include a chip with a pair of conductive through vias. Conductive elements are disposed one side of the chip contacting the pair of conductive through vias. Thermoelectric components are disposed on the other side of the chip, wherein the thermoelectric component includes a first type conductive thermoelectric element and a second type conductive thermoelectric element respectively corresponding to and electrically connecting to the pair of conductive through vias. A substrate is disposed on the thermoelectric component, wherein the thermoelectric component, the pair of conductive through vias and the conductive element form a thermoelectric current path. Therefore, heat generated from the chip is transferred outward through a thermoelectric path formed from the thermoelectric components, the conductive through vias and the conductive elements.
摘要:
An active solid heatsink device and fabricating method thereof is related to a high-effective solid cooling device, where heat generated by a heat source with a small area and a high heat-generating density diffuses to a whole substrate using a heat conduction characteristic of hot electrons of a thermionic (TI) structure, and the thermionic (TI) structure and a thermo-electric (TE) structure share the substrate where the heat diffuses to. Further, the shared substrate serves as a cold end of the TE structure, and the heat diffusing to the shared substrate is pumped to another substrate of the TE structure serving as a hot end of the TE structure.