Abstract:
The overall performance of a dual-path ADC system may be improved by using a VCO-based ADC for small-amplitude signals and employing non-linear cancellation to remove nonlinearities in signals output by the VCO-based ADC. In particular, VCO-based dual-path ADC systems of this disclosure may be configured to receive a first digital signal from a first ADC and a second digital signal from a second ADC, wherein the second digital signal is more non-linear than the first digital signal. The dual-path systems may also be configured to determine one or more non-linear coefficients of the second digital signal based, at least in part, on processing of the first and second digital signals. The dual-path systems may be further configured to modify the second digital signal based, at least in part, on the determined one or more non-linear coefficients to generate a more linear second digital signal.
Abstract:
The dynamic range and power efficiency of a voice-activated system may be improved by dynamically adjusting the configuration of the voice-activated system's input path. In one embodiment, a first portion of audio may be received through an input path of the voice-activated system having a first configuration. A characteristic of the first portion of audio may be determined and the input path may be adjusted to a second configuration based on the determined characteristic. A second portion of audio may then be received through the input path having the second configuration, and speech analysis may be performed on the second portion of audio.
Abstract:
Methods and systems for determining clock signals for audio processing using different operating modes are provided. In one aspect, a transition control word is determined to transition from a first control word for a first operating mode to a second control word for the second operating mode. The transition control word may be used to process the received audio signal while transitioning between the operating modes. After the transition, the second control word may be used to process the received audio signal using the second operating mode. The transition control word may be used to transition between various aspects of the operating modes, including different frequencies or resolutions, control systems, power levels, and more.
Abstract:
Amplifier circuits provide operation with low-distortion zero crossings outside of a unipolar power supply voltage range. The amplifiers include multiple driver circuits and a control circuit. The control circuit selects between actively operating selected ones of the multiple driver circuits or all of the multiple driver circuits, according to an input signal to be reproduced by one or more of the multiple amplifier driver circuits. The control circuit determines a splice point at which the control circuit selects between actively operating selected ones of the multiple driver circuits or all of the multiple driver circuits.
Abstract:
In accordance with embodiments of the present disclosure, a method may include, in a system comprising a differential filter comprising a plurality of impedance elements, applying a common-mode signal to the differential filter, measuring an output signal of the differential filter in response to the common-mode signal to determine an error due to impedance mismatch of the impedance elements, and tuning one or more of the plurality of impedance elements to minimize the error.
Abstract:
This application relates to methods and apparatus for driving a transducer with switching drivers. A switching driver has first and second supply node for receiving supply voltages and includes an output bridge stage, a capacitor and a network of switches. The network of switches is operable in different switch states to provide different switching voltages to the output bridge stage. A controller is configured to control the switch state of the network of switches and a duty cycle of output switches of the output bridge stage based on an input signal to generate an output signal for driving the transducer.
Abstract:
A feedforward correction block for use in a multi-level output system may include circuitry configured to determine an occurrence of a mode transition between operating modes of the multi-level output system, capture a loop filter output of a signal path of the multi-level output system occurring before and after the occurrence of the mode transition, and based on the transition and a change in the loop filter output responsive to the transition, determine a transition-specific compensation function to apply to a feedforward input signal of the signal path that is combined with the loop filter output.
Abstract:
Driver circuitry for driving an electromechanical load with a drive output signal, the driver circuitry comprising: a first control loop operable to control the drive output signal based on a drive input signal; and a second control loop operable to control the drive output signal based on a current flowing through and/or a voltage induced across the electromechanical load, wherein the second control loop is configured to have a lower latency than the first control loop, and to control the drive output signal to compensate for an impedance of the electromechanical load.
Abstract:
A switched mode amplifier system may include a switched mode amplifier having an amplifier input coupled to an output of an analog integrator and an amplifier output, include a feedback network coupled between the amplifier output and an input of the analog integrator, and a calibration system. The calibration system may be configured to force the input of the analog integrator to a fixed known input value, force the amplifier output to a fixed known duty cycle, measure an analog signal generated at the output of the analog integrator in response to forcing the input of the analog integrator to the fixed value, determine an offset of the switched mode amplifier system based on the analog signal, and correct for the offset.
Abstract:
Calibration of devices communicating on a shared data bus may improve data integrity on the shared data bus by reducing duty cycle distortion. Duty cycle distortion may be reduced by adjusting timing of a transceiver in a device for communicating on the shared data bus using calibration codes. The calibration codes may be loaded into memory and used to reconfigure the transceiver timing on the shared data bus with reconfiguration occurring within one or more unit-intervals of time. The calibration code may be used, for example, to adjust a PMOS or NMOS trim circuit at the transceiver.