Abstract:
A vascular intervention device delivery system, such as for implanting a self expanding stent, includes a thumbwheel rotatably mounted in a handle. A catheter has a proximal end attached to the handle and a distal carrier segment for mounting a stent thereon. A retractable sheath is movable to a position retracted proximally to uncover the distal carrier segment. A pull with a curved cross section extends between the thumbwheel and the retractable sheath. An idler wheel with a perimeter notch is rotatably mounted in the handle proximal to the thumbwheel. A pin is movably in the handle between a first position received in the perimeter notch to block rotation of the idler wheel, and a second position outside of the perimeter notch to permit rotation of the idler wheel. The pull wraps around the idler wheel to return in a direction for being wound onto a spool of the thumbwheel.
Abstract:
A vascular intervention device delivery system includes a catheter with a proximal end attached to a handle, and a distal carrier segment for mounting a vascular intervention device thereon. A retractable sheath is movable from a first position covering the distal carrier segment to a second position retracted proximally uncovering the distal carrier segment. A pull is attached to the retractable sheath and extends proximally from the retractable sheath toward the handle. A majority of the length of the pull has a cross sectional shape with a concave side that faces the longitudinal axis and is opposite to a convex side that faces away from the longitudinal axis. The cross sectional shape has a width that is greater than a thickness.
Abstract:
A medical device such as a stent (10) or medical balloon (40) is functionalised prior to coating with a bioactive material (54), specifically by acidification or basification the contact surface or surfaces (50) of the medical device. Functionalisation with subsequent coating of bioactive agent directly onto the functionalised surface provides a significantly more consistent and reliable coating of bioactive agent on a medical device without requiring containment or time release devices.
Abstract:
There are disclosed implantable medical devices and apparatus for treating implantable medical devices during production, so as to cause the implantable medical devices to have abluminal surfaces and luminal surfaces with different functional characteristics and in particular surface energies. The luminal surfaces of the medical device are preferably coated with carbon, so as to have a low surface energy, which reduces the risk of thrombi forming when implanted into a patient's vessels. The abluminal surfaces are treated so as to have a high surface energy, such that a therapeutic, preferably bioactive, material, such as a drug, can adhere to the abluminal surfaces and preferably without any need for a containment layer such as polymer or other matrix material. Once the therapeutic material has been delivered into the tissue wall, the stent can remain within the patient's vessel without leaving any delivery artefacts, as occurs with some prior art drug eluting medical devices.
Abstract:
A method is provided for loading and delivering a self-expanding stent. The stent is compressed from its expanded diameter to a smaller delivery diameter. While compressed, the stent is pushed from the proximal end through the proximal end opening of a restraining sheath. The restraining sheath retains the stent in the delivery diameter. In order to deliver the stent, the proximal end of the stent is pushed and the restraining sheath is withdrawn proximally from the stent. As a result, the stent is released from the distal end opening of the restraining sheath.
Abstract:
A nickel-titanium-rare earth (Ni—Ti-RE) alloy comprises nickel at a concentration of from about 35 at. % to about 65 at. %, a rare earth element at a concentration of from about 1.5 at. % to about 15 at. %, boron at a concentration of up to about 0.1 at. %, with the balance of the alloy being titanium. In addition to enhanced radiopacity compared to binary Ni—Ti alloys and improved workability, the Ni—Ti-RE alloy preferably exhibits superelastic behavior. A method of processing a Ni—Ti-RE alloy includes providing a nickel-titanium-rare earth alloy comprising nickel at a concentration of from about 35 at. % to about 65 at. %, a rare earth element at a concentration of from about 1.5 at. % to about 15 at. %, the balance being titanium; heating the alloy in a homogenization temperature range below a critical temperature; and forming spheroids of a rare earth-rich second phase in the alloy while in the homogenization temperature range.