Abstract:
A case is formed of aluminum. A rotation axis has one end affixed with an input rotor element and is rotational with a rotor. A first bearing is equipped to the case and is located between the input rotor element and the rotor to rotationally support the rotation axis. A second bearing is equipped to the case and is located on an opposite side of the rotor from the first bearing to rotationally support the rotation axis. A multilayered helical wave washer is wound for three rounds or more in a spiral wave form and is located in an axial gap formed between the case and an outer ring of one of the first bearing and the second bearing to apply a spring load to the outer ring in the axial direction.
Abstract:
An electric rotating machine has a first end frame and a second end frame for firmly supporting a stator between them in an axial direction of the electric rotating machine. An electronic control portion is mounted to a rear side of the first end frame. Multiple through-holes are formed at a radial-outer periphery of the second end frame. Each of multiple through-bolts is inserted into the respective through-holes from a side of the second end frame and screwed into the first end frame, to thereby firmly connect the first and the second end frames to each other.
Abstract:
A cover is configured into a tubular form and is fitted to a radially outer surface of each of projections of a rotor core and a radially outer surface of each of permanent magnets. A circumferential center portion of the radially outer surface of each projection contacts a radially inner surface of the cover. Circumferential end portions of the radially outer surface of each projection are radially inwardly spaced from the radially inner surface of the cover.
Abstract:
A rotating electrical machine includes a rotor and a magnet unit. The rotating electrical machine also includes a cylindrical stator and a housing. The stator is equipped with a stator winding made up of a plurality of phase windings. The stator is arranged coaxially with the rotor and faces the rotor. The housing has the rotor and the stator disposed therein. The rotor includes a cylindrical magnet retainer to which the magnet unit is secured and an intermediate portion which connects between a rotating shaft of the rotor and the magnet retainer and extends in a radial direction of the rotating shaft. A first region located radially inside an inner peripheral surface of a magnetic circuit component made up of the stator and the rotor is greater in volume than a second region between the inner peripheral surface of the magnetic circuit component and the housing in the radial direction.
Abstract:
A rotary electric machine according to the present disclosure provides a rotary electric machine including: a rotor; and a concentrated winding stator arranged coaxially to the rotor, in which the number of teeth of the concentrated winding stator is set to be a value where an integer which is multiple of 3 between adjacent prime numbers in a prime number sequence is multiplied by 2 and the number of poles of the rotor is set to be a value where any prime number between the adjacent prime numbers is multiplied by 2.
Abstract:
Disclosed is a method of manufacturing a core sheet. The core sheet has an annular core back portion and a plurality of tooth portions extending from the core back portion toward a radial center thereof. The method includes a blanking step, a rolling step and a removing step. In the removing step, an insulation coating, which is on a region of a grain-oriented magnetic steel sheet for forming a band-shaped core back portion, on a band-shaped core back portion of a sheet piece or on the core back portion of the core sheet, is at least partially removed.
Abstract:
A rotating electrical machine includes a rotor and a magnet unit. The rotating electrical machine also includes a cylindrical stator and a housing. The stator is equipped with a stator winding made up of a plurality of phase windings. The stator is arranged coaxially with the rotor and faces the rotor. The housing has the rotor and the stator disposed therein. The rotor includes a cylindrical magnet retainer to which the magnet unit is secured and an intermediate portion which connects between a rotating shaft of the rotor and the magnet retainer and extends in a radial direction of the rotating shaft. A first region located radially inside an inner peripheral surface of a magnetic circuit component made up of the stator and the rotor is greater in volume than a second region between the inner peripheral surface of the magnetic circuit component and the housing in the radial direction.
Abstract:
In a driving device for a rotating electric machine, a first inverter unit blocks and allows, for each winding of multi-phase windings of the rotating electric machine, current conduction on one side of the winding and a second inverter unit blocks and allows current conduction on the other side of the winding. A plurality of second switching elements forming the second inverter unit each have a lower ON resistance than a plurality of first switching elements forming the first inverter unit. A controller is configured to switch on and off the respective first switching elements at a switching frequency higher than an electric fundamental frequency and switch on and off the respective second switching elements at a switching frequency lower than the switching frequency at which to switch on and off the first switching elements.
Abstract:
A rotating electrical machine includes a rotor and a magnet unit. The rotating electrical machine also includes a cylindrical stator and a housing. The stator is equipped with a stator winding made up of a plurality of phase windings. The stator is arranged coaxially with the rotor and faces the rotor. The housing has the rotor and the stator disposed therein. The rotor includes a cylindrical magnet retainer to which the magnet unit is secured and an intermediate portion which connects between a rotating shaft of the rotor and the magnet retainer and extends in a radial direction of the rotating shaft. A first region located radially inside an inner peripheral surface of a magnetic circuit component made up of the stator and the rotor is greater in volume than a second region between the inner peripheral surface of the magnetic circuit component and the housing in the radial direction.
Abstract:
A rotating electric machine unit includes a rotating electric machine, a high heat generation circuit and a low heat generation circuit both of which are electrically connected with the rotating electric machine, a first cooler, a first-coolant supplier, a second cooler and a second-coolant supplier. The first cooler is configured to cool both the high heat generation circuit and the low heat generation circuit with a first coolant. The first-coolant supplier is configured to supply the first coolant to the first cooler. The second cooler is configured to cool the rotating electric machine with a second coolant. The second-coolant supplier is configured to supply the second coolant to the second cooler. The second-coolant supplier is formed integrally with a low heat generation circuit-cooling part of the first cooler. The second-coolant supplier includes a heat exchanger via which heat is exchanged between the first coolant and the second coolant.