Abstract:
A dosing and mixing arrangement includes a mixing tube having a constant diameter along its length. At least a first portion of the mixing tube includes a plurality of apertures. The arrangement also includes a swirl structure for causing exhaust flow to swirl outside of the first portion of the mixing tube in one direction along a flow path that extends at least 270 degrees around a central axis of the mixing tube. The arrangement is configured such that the exhaust enters an interior of the mixing tube through the apertures as the exhaust swirls along the flow path. The exhaust entering the interior of the mixing tube through the apertures has a tangential component that causes the exhaust to swirl around the central axis within the interior of the mixing tube. The arrangement also includes a doser for dispensing a reactant into the interior of the mixing tube.
Abstract:
An exhaust treatment device for treating exhaust includes a main body defining an interior, an inlet, and an outlet; an inlet arrangement disposed at the inlet; an aftertreatment substrate disposed between the inlet and the outlet; a restrictor arrangement disposed between a first closed end of the main body interior and the aftertreatment substrate; and a dosing arrangement configured to inject reactant into the exhaust. The restrictor arrangement defines a restricted passageway that extends towards the first closed end so that exhaust entering the main body interior from the inlet is swirled around the restricted passageway before entering the restricted passageway and passing to a second chamber prior to the aftertreatment substrate.
Abstract:
A flow device for an exhaust system includes a body that defines an interior cavity. An exhaust inlet passage is disposed in the interior cavity. An exhaust outlet passage is disposed in the interior cavity so that at least a portion of the exhaust inlet passage circumferentially surrounds at least a portion of the exhaust outlet passage. A doser is adapted to inject reductants into the interior cavity of the body such that the reductants are injected in the same general direction as the direction of flow of the exhaust gases.
Abstract:
An exhaust treatment device is disclosed. The exhaust treatment device has a compact configuration that includes integrated reactant dosing, reactant mixing and contaminant removal/treatment. The mixing can be achieved at least in part by a swirl structure and contaminant removal can include NOx reduction.
Abstract:
An exhaust treatment device is disclosed. The exhaust treatment device has a compact configuration that includes integrated reactant dosing, reactant mixing and contaminant removal/treatment. The mixing can be achieved at least in part by a swirl structure and contaminant removal can include NOx reduction.