Abstract:
High-performance substrate cleaning apparatus, substrate cleaning method, substrate processing apparatus, and substrate drying apparatus are provided.A substrate cleaning apparatus, including: a substrate holding and rotating mechanism that holds and rotates a substrate; a first cleaning mechanism that brings a cleaning tool into contact with the substrate to clean the substrate, cleans the substrate using two-fluid jet, or cleans the substrate using ozone water; and a second cleaning mechanism that cleans the substrate using an ultrasonic cleaning liquid is provided.
Abstract:
A washing device includes: a plurality of spindles which holds a substrate and rotates the substrate about a central axis of the substrate as a rotary axis; and a single tube nozzle which discharges a washing liquid toward an upper surface of the substrate, wherein the single tube nozzle discharges the washing liquid so that the washing liquid lands in front of the center of the substrate and the landed washing liquid flows on the upper surface of the substrate toward the center of the substrate. A liquid flow on the upper surface of the substrate after landing of the washing liquid discharged from the single tube nozzle passes through the center of the substrate.
Abstract:
A cleaning device, according to one embodiment, for cleaning a substrate by being rotated, includes: a cleaning member configured to clean a substrate; and a sleeve configured to be provided along a circumference of the cleaning member, a lower part of the sleeve being divided into a plurality of chucking claws each of which holds a portion of a side face of the cleaning member, wherein at inside of each of the plurality of chucking claws, a plurality of protrusions are provided substantially parallel to a rotation direction of the cleaning member, an end of each of the plurality of protrusions is configured to contact the side face of the cleaning member.
Abstract:
A substrate cleaning apparatus capable of quickly removing cleaning liquid that has been used in cleaning of a substrate with a roll cleaning tool from the substrate. The substrate cleaning apparatus includes a substrate holder configured to hold and rotate a substrate; a cleaning-liquid supply nozzle configured to supply cleaning liquid onto a first region of the substrate; a roll cleaning tool configured to be placed in sliding contact with the substrate in the presence of the cleaning liquid to thereby clean the substrate; and a fluid supply nozzle configured to supply fluid, which is constituted by pure water or chemical liquid, onto a second region of the substrate. The second region is located at an opposite side of the first region with respect to the roll cleaning tool, and a supply direction of the fluid is a direction from a central side toward a peripheral side of the substrate.
Abstract:
An apparatus for measuring a surface potential of an object on an underlying structure is disclosed. A relatively-moving mechanism moves a probe and a second support member relative to each other until the probe faces a reference structure on the second support member, an electric potential measuring device measures the surface potential of the reference structure through the probe, the controller calibrates the electric potential measuring device such that a measured value of the surface potential of the reference structure becomes 0, the relatively-moving mechanism moves the probe and a first support member relative to each other until the probe faces the object on the first support member after the calibration, and the electric potential measuring device measures the surface potential of the object through the probe.
Abstract:
A substrate cleaning apparatus cleans a surface of a substrate in a non-contact state. The substrate cleaning apparatus includes a substrate holding mechanism configured to hold and rotate the substrate, a two-fluid nozzle configured to jet a two-fluid jet flow, comprising a gas and a liquid, downwardly toward the front surface of the substrate held by the substrate holding mechanism, and a moving mechanism configured to move the two-fluid nozzle in one direction from a central portion toward a radially outer side of the substrate held by the substrate holding mechanism. The two-fluid nozzle is inclined so that an angle between an ejection center line of the two-fluid jet flow jetted from the two-fluid nozzle and a vertical line becomes a certain inclined angle, and the two-fluid jet flow collides with the front surface of the substrate at a forward position in a moving direction of the two-fluid nozzle.
Abstract:
A substrate cleaning apparatus performs scrub cleaning of a surface of a substrate by keeping a roll cleaning member and the surface of the substrate in contact with each other in the presence of a cleaning liquid. The substrate cleaning apparatus includes a first chemical liquid supply nozzle comprising a nozzle configured to supply a chemical liquid toward the substrate so that the chemical liquid is brought into contact with the surface of the substrate in a first contact area extending in an elongated shape, and a second chemical liquid supply nozzle comprising a nozzle configured to supply a chemical liquid toward the substrate so that the chemical liquid is brought into contact with the surface of the substrate in a second contact area spreading in an elliptical shape.
Abstract:
A substrate drying apparatus includes a drying gas nozzle configured so that, assuming that a surface WA of the substrate W is a projection plane, regarding the drying gas flow Gf in the nozzle moving direction Dr, a collision position Gfw with the substrate W is located downstream of a projected discharge position Gfv′, the projected discharge position Gfv′ being a discharge position from the drying gas nozzle projected on the projection plane. In a three-dimensional space, the drying gas flow Gf is inclined, such that an angle α formed by an axis Ga of the drying gas flow Gf and a vertical line Wp of the substrate W is in a range from a half contact angle θ/2 to an angle determined by deducting the half contact angle θ/2 from 90°, the half contact angle θ/2 being a half of the contact angle θ.