Abstract:
A non-volatile magnetic memory element includes a number of layers one of which is a free layer which is graded. The graded free layer may include various elements with each element having a different anisotropy or it may include nonmagnetic compounds and magnetic regions with the non-magnetic compounds forming graded contents forming a unique shape such as cone shaped, diamond shaped or other shapes and whose thickness is based on the reactivity of the magnetic compound.
Abstract:
A non-volatile magnetic memory element includes a number of layers one of which is a free layer which is graded. The graded free layer may include various elements with each element having a different anisotropy or it may include nonmagnetic compounds and magnetic regions with the non-magnetic compounds forming graded contents forming a unique shape such as cone shaped, diamond shaped or other shapes and whose thickness is based on the reactivity of the magnetic compound.
Abstract:
A non-volatile magnetic memory element includes a number of layers one of which is a free layer which is graded. The graded free layer may include various elements with each element having a different anisotropy or it may include nonmagnetic compounds and magnetic regions with the non-magnetic compounds forming graded contents forming a unique shape such as cone shaped, diamond shaped or other shapes and whose thickness is based on the reactivity of the magnetic compound.
Abstract:
A multi-state current-switching magnetic memory element has a magnetic tunneling junction (MTJ), for storing more than one bit of information. The MTJ includes a fixed layer, a barrier layer, and a non-uniform free layer. In one embodiment, having 2 bits per cell, when one of four different levels of current is applied to the memory element, the applied current causes the non-uniform free layer of the MTJ to switch to one of four different magnetic states. The broad switching current distribution of the MTJ is a result of the broad grain size distribution of the non-uniform free layer.
Abstract:
A non-volatile current-switching magnetic memory element includes a bottom electrode, a pinning layer formed on top of the bottom electrode, and a fixed layer formed on top of the pinning layer. The memory element further includes a tunnel layer formed on top of the pinning layer, a first free layer formed on top of the tunnel layer, a granular film layer formed on top of the free layer, a second free layer formed on top of the granular film layer, a cap layer formed on top of the second layer and a top electrode formed on top of the cap layer.
Abstract:
A non-volatile current-switching magnetic memory element includes a bottom electrode, a pinning layer formed on top of the bottom electrode, and a fixed layer formed on top of the pinning layer. The non-volatile current-switching magnetic memory element further includes a tunnel layer formed on top of the pinning layer, a first free layer with a perpendicular anisotropy that is formed on top of the tunnel layer, a granular film layer formed on top of the free layer, a second free layer formed on top of the granular film layer, a cap layer formed on top of the second layer, and a top electrode formed on top of the cap layer.
Abstract:
The present invention includes a circuit for deriving a reference signal having a reference voltage from a system voltage source having a system voltage level and for regulating the reference voltage level. The circuit includes an output sub-circuit, a reference generator sub-circuit, a regulator sub-circuit, a translator sub-circuit, and a low pass filter sub-circuit. The output sub-circuit, which is coupled to the system voltage source, is responsive to a voltage control signal, and is operative to generate the reference signal wherein the reference voltage level is less than or equal to the system voltage level. The reference generator sub-circuit is responsive to the reference signal and is operative to generate a prime voltage level which remains substantially unaffected by fabrication process variations, temperature variations and variations in the reference signal. The regulator sub-circuit is responsive to the reference signal and the prime voltage level and is operative to generate the voltage control signal. The translator sub-circuit is coupled to the system voltage source and functions to amplify the voltage control signal. The low pass filter sub-circuit is used for filtering the voltage control signal. The output sub-circuit includes an output transistor having its gate coupled to receive the voltage control signal, its source connected to the system voltage source, and its drain connected to an output terminal at which the reference signal is provided.
Abstract:
A flash EPROM cell has a reduced cell size by providing vertical coupling between the floating gate and the bit line during programming. The erase operation is done by tunneling of electrons from the sharp tip of the Poly spacer to the control gate. The cell is adapted so that the source for each cell within the array is the source of an adjacent cell and the drain is the drain to another adjacent cell. The cell is formed by forming the drain regions into the substrate through openings in a first insulator that is preferably the field oxide. A second insulator is deposited over the first insulator, over the substrate and along the side walls of the openings and is preferably a thin layer so that the opening is covered with a thin insulating layer. The insulated opening is filled with a metal, preferably tungsten or a tungsten alloy. The field oxide is selectively removed. A gate oxide is grown and a first polysilicon layer is formed and then etched to form spacers along the edges of the metal/second insulator structure. The first polysilicon is selectively etched and a tunneling insulator layer is formed thereover. A second polysilicon layer is formed over the tunneling insulator.
Abstract:
A flash EPROM cell has a reduced cell size by providing vertical coupling between the floating gate and the bit line during programming. The erase operation is done by tunneling of electrons from the sharp tip of the Poly spacer to the control gate. The cell is adapted so that the source for each cell within the array is the source of an adjacent cell and the drain is the drain to another adjacent cell. The cell is formed by forming the drain regions into the substrate through openings in a first insulator that is preferably the field oxide. A second insulator is deposited over the first insulator, over the substrate and along the side walls of the openings and is preferably a thin layer so that the opening is covered with a thin insulating layer. The insulated opening is filled with a first doped polysilicon layer. The field oxide is selectively removed. A gate oxide is grown and a second polysilicon layer is formed and then etched to form spacers along the edges of the first polysilicon/second insulator structure. The second polysilicon is selectively etched and a tunneling insulator layer is formed thereover. A third polysilicon layer is formed over the tunneling insulator.
Abstract:
Methods of fabricating MTJ arrays using two orthogonal line patterning steps are described. Embodiments are described that use a self-aligned double patterning method for one or both orthogonal line patterning steps to achieve dense arrays of MTJs with feature dimensions one half of the minimum photo lithography feature size (F). In one set of embodiments, the materials and thicknesses of the stack of layers that provide the masking function are selected so that after the initial set of mask pads have been patterned, a sequence of etching steps progressively transfers the mask pad shape through the multiple mask layer and down through all of the MTJ cell layers to the form the complete MTJ pillars. In another set of embodiments, the MTJ/BE stack is patterned into parallel lines before the top electrode layer is deposited.