摘要:
Voltage and current on a power transmission line are first obtained, filtered and converted to digital representations. The positive sequence components of the voltage and current are determined and the impedance at the relay is then calculated from those positive sequence voltages and currents. The positive sequence impedance is converted into a magnitude and phase angle representation and then compared against a load pattern which is also represented by magnitude and phase angle representations. If the calculated impedance at the relay is within the load impedance pattern, the distance relay is prevented, i.e. blocked, from sending an output signal to trip a circuit breaker protecting the transmission line.
摘要:
A directional element measures the negative sequence voltage and the negative sequence current and from those quantities produces a scalar quantity related to the negative sequence impedance of a power transmission line relative to the location of the directional element. The scalar quantity is then compared against two threshold quantity settings, one to determine a forward fault, the other to determine a reverse fault. The scalar quantity must be less than the forward threshold quantity for a forward fault and greater than the reverse threshold quantity for a reverse fault.
摘要:
In one embodiment, the sampling order of voltage/current data channels from a power transmission line is controlled so that the average sampling instant for each channel is the same. In one example involving a six-channel system, the sampling order will alternate between 1,2,3,4,5,6 and 6,5,4,3,2,1. The sampled data is applied through a digital filter which averages the sampling instant for each channel. In another embodiment, low-pass filters are positioned on each channel, the low-pass filter introducing a predetermined delay for each channel which compensates for the sampling delay on each channel where the channels are sampled in a particular sequential order, i.e. 1,2,3,4 . . . n. The shortest delay will be present in the low-pass filter associated with the first channel, a slightly longer delay will be present in the low-pass filter associated with the second channel and so on through the nth channel.
摘要:
A display transducer adapter for obtaining and displaying power system information from a protective relay. The information includes watt, voltage, current, reactive power, and fault location information. The information may be converted from a digitized format into analog signals and those signals may be provided as outputs, the functions of which are user selectable. The user may also selectively scale the outputs to cover a specified range.
摘要:
The present disclosure provides for selectively enabling a primary communication channel upon receipt of enablement instructions received via a secondary communication channel. In some embodiments, a first intelligent electronic device (IED) may be connected to a second IED via a primary communication channel. In various embodiments, the primary communication channel may be selectively and/or temporarily enabled by transmitting an enablement instruction via a secondary communication channel. The secondary communication channel may be relatively more secure than the primary communication channel. In some embodiments, the secondary communication channel may also connect the first and second IEDs. Accordingly, the first IED may transmit an enablement instruction to the second IED in order to temporarily enable communication via the primary communication channel between the first and second IEDs.
摘要:
A high-speed signaling device on a branch of an electric power distribution system modulates the signal from the branch and communicates the signal to an intelligent electronic device on a feeder to the branch at speeds sufficient for the intelligent electronic device to modify protection algorithms based on the signal from the high-speed signaling device. The intelligent electronic device may be a recloser control that controls protective equipment such as a recloser. The signal may be sent via infrared and/or radio frequency. The signal may be modulated so as to communicate information such as the phase with which it is associated. The high-speed signaling device may further communicate current information to the intelligent electronic device.
摘要:
An method for automatically testing an arc flash detection system by periodically or continually transmitting electro-optical (EO) radiation through one or more transmission cables electro-optically coupled to respective EO radiation collectors. A test EO signal may pass through the EO radiation collector to be received by an EO sensor. An attenuation of the EO signal may be determined by comparing the intensity of the transmitted EO signal to an intensity of the received EO signal. A self-test failure may be detected if the attenuation exceeds a threshold. EO signals may be transmitted according to a particular pattern (e.g., a coded signal) to allow an arc flash detection system to distinguish the test EO radiation from EO radiation indicative of an arc flash event.
摘要:
A system for controlling and automating an electric power delivery system by executing time coordinated instruction sets to achieve a desired result. A communication master may implement the execution of time coordinated instruction sets in a variety of circumstances. The communication may be embodied as an automation controller in communication with intelligent electronic devices (IEDs). The communication master may also be embodied as an IED that is configured to coordinate the actions of other IEDs. The time coordinated instruction sets may include steps for checking status of power system equipment before executing. The time coordinated instruction sets may include reactionary steps to execute if one of the steps fails. The time coordinated instruction sets may also be implemented based on a condition detected in the electric power delivery system, or may be implemented through high level systems, such as a SCADA system or a wide area control and situational awareness system.
摘要:
A system for controlling and automating an electric power delivery system by executing time coordinated instruction sets to achieve a desired result. A communication master may implement the execution of time coordinated instruction sets in a variety of circumstances. The communication may be embodied as an automation controller in communication with intelligent electronic devices (IEDs). The communication master may also be embodied as an IED that is configured to coordinate the actions of other IEDs. The time coordinated instruction sets may include steps for checking status of power system equipment before executing. The time coordinated instruction sets may include reactionary steps to execute if one of the steps fails. The time coordinated instruction sets may also be implemented based on a condition detected in the electric power delivery system, or may be implemented through high level systems, such as a SCADA system or a wide area control and situational awareness system.
摘要:
A State and Topology Processor (STP) may be communicatively coupled to one or more intelligent electronic devices (IEDs) communicatively coupled to a electrical power system to obtain one or more current measurements, voltage measurements, and dynamic topology data therefrom. The STP may receive the measurement data and may determine a current topology and a voltage topology therefrom. A current processor may use the current topology and the current measurements to refine the measurements, perform KCL, unbalance, symmetrical component, and consistency checks on the electrical power system. The voltage processor may use the voltage topology and the voltage measurements to perform similar checks on the electrical power system. One or more alarms may be generated responsive to the checks. The data may be displayed to a user in a display of a human machine interface and/or may be transmitted to a user programmable task module, and/or an external control unit.