Abstract:
A handover method and a control transfer method are provided. A handover method of performing an inter-cell handover between a first ground station and a second ground station may include setting a first channel to the second ground station, measuring, by an airborne radio station, a second channel and reporting a measurement result to the first ground station, sending, by the first ground station, a handover request to at least one of a ground control station (GCS) or a control and non-payload communication (CNPC) network, determining, by the at least one of the GCS or the CNPC network, whether to perform a handover, and transmitting, by the at least one of the GCS or the CNPC network, a handover instruction to the airborne radio station based on a result of the determining.
Abstract:
A handover method and a control transfer method are provided. A handover method of performing an inter-cell handover between a first ground station and a second ground station may include setting a first channel to the second ground station, measuring, by an airborne radio station, a second channel and reporting a measurement result to the first ground station, sending, by the first ground station, a handover request to at least one of a ground control station (GCS) or a control and non-payload communication (CNPC) network, determining, by the at least one of the GCS or the CNPC network, whether to perform a handover, and transmitting, by the at least one of the GCS or the CNPC network, a handover instruction to the airborne radio station based on a result of the determining.
Abstract:
Disclosed herein are a method and an apparatus for transmitting an uplink signal. The method for transmitting an uplink signal includes: transmitting an uplink data in at least one symbol included in a short transmit time interval (sTTI) including 7 symbols or less; and transmitting a demodulation reference signal (DMRS) for the uplink data through an even-numbered subcarrier or an odd-numbered subcarrier in one symbol in which the uplink data is not transmitted, among the symbols included in the sTTI.
Abstract:
A terminal executes a random access procedure with a target base station depending on a pre-random access channel (pre-RACH) command in a handover preparation step executed between a source base station currently accessed by the terminal and the target base station when the terminal receives the pre-RACH command from the source base station through layer2 (L2) signaling in the handover preparation step.
Abstract:
A method and an apparatus for transmitting the physical uplink control channel including an uplink control channel expressed by product of a uplink control information and a sequence and demodulation reference signal expressed by a sequence having different cyclic shift values through a short resource block are provided.
Abstract:
A transmitting apparatus in a mobile communication system determines a size of a Transmission Time Interval (TTI) that allocates a transmitting symbol in a minimum unit according to a quantity of data to transmit to each receiving apparatus and a latency time, allocates a control channel and a data channel in a frequency domain of a subframe including a plurality of transmitting symbols, and transmits respective control information and data to corresponding receiving apparatuses through the control channel and the data channel at the determined TTI in a radio frame including a plurality of subframes.
Abstract:
A communication system configured to send data using an interference alignment scheme is disclosed herein. The disclosed communication system includes an MS and a BS. The disclosed BS sends data using a transmission beamforming matrix that minimizes intra-cell interference. The disclosed MS receives the data using a reception beamforming matrix that minimizes inter-cell interference. The BS sends information about a reference beamforming matrix to the MS, and sends a pilot signal to the MS using the reference beamforming matrix. The MS estimates an effective channel using the reference beamforming matrix, and calculates the intensity of an interference signal from an interference BS.
Abstract:
A beamforming apparatus and method for expanding coverage of a control channel are provided, by which neighboring communication devices are classified according to the number of beams that they can receive, and therefore the frequency or period of beam transmission is adjusted to transmit a control channel by a beamforming method. Hence, an overhead reduction and an increase in transmission rate can be achieved, and coverage holes can be prevented.
Abstract:
An information exchange apparatus of each node for sharing information between a plurality of nodes receives request information from an adjacent node and determines an information transmitting node based on information that each node holds and request information from the adjacent node, and an information exchange apparatus of a node that is determined to be an information transmitting node generates candidate transmitting information by performing network coding of at least one information set of held information, determines one of candidate transmitting information sets as transmitting information, and transmits the candidate transmitting information set to the adjacent node.
Abstract:
A method of managing a low-duty mode operation is provided by a small base station. The small base station determines a low-duty cycle pattern in which an available interval for data traffic transmission on active air interface and an unavailable interval for transmitting no data traffic are repeated, and provides a terminal with low-duty cycle pattern information. The low-duty cycle pattern information includes a length of the available interval and a start offset indicating a wireless frame at which the low-duty cycle pattern starts.