Abstract:
The present invention provides a method of controlling the distribution of a fluid on a body that features compensating for varying distribution of constituent components of a composition that moved over a surface of a substrate. To that end, the method includes generating a sequence of patterns of liquid upon a substrate, each of which includes a plurality of spaced-apart liquid regions, with voids being defined between adjacent liquid regions. A second of the patterns of liquid of the sequence is arranged so that the liquid regions associated therewith are in superimposition with the voids of a first of the patterns of liquid of the sequence.
Abstract:
The present invention provides a method to reduce adhesion between a conformable region on a substrate and a pattern of a mold, which selectively comes into contact with the conformable region. The method features forming a conformable material on the substrate and contacting the conformable material with the surface. A conditioned layer is formed from the conformable material. The conditioned layer has first and second sub-portions, with the first sub-portion being solidified and the second sub-portion having a first affinity for the surface and a second affinity for the first sub-portion. The first affinity is greater than the second affinity. In this fashion, upon separation of the mold from the conditioned layer, a subset of the second sub-portion maintains contact with the mold, thereby reducing the probability that a pattern formed in the conditioned layer becomes compromised.
Abstract:
The present invention is directed to a method to improve a flow rate of imprinting material, said method including, inter alia, propagating radiation through said imprinting material to impinge upon an absorption layer; absorbing said radiation by said absorption layer to collect thermal energy with said absorption layer, defining collected thermal energy; and transferring said collected thermal energy to said imprinting material through thermal conduction to increase a temperature of said imprinting material
Abstract:
The present invention provides a method that features improved preferential adhesion and release characteristics with respect to a substrate and a mold having imprinting material disposed therebetween. To that end, the method includes locating the imprinting material between the mold and the substrate so as to be bifurcated into a surfactant-component-rich sub-portion and a surfactant-component-depleted sub-portion located between said surfactant-component-rich sub-portion and said substrate. This surfactant-component-rich sub-portion attenuates the adhesion forces between mold and the imprinting material, once solidified.
Abstract:
The present invention includes a method and a composition to form a layer on a substrate having uniform etch characteristics. To that end, the method includes controlling variations in the characteristics of a solid layer, such etch characteristics over the area of the solid layer as a function of the relative rates of evaporation of the liquid components that comprise the composition from which the solid layer is formed.
Abstract:
One embodiment of the present invention is a method for generating patterned features on a substrate that includes: (a) forming a first layer on at least a portion of a surface of the substrate, the first layer comprising at least one layer of a first material, which one layer abuts the surface of the substrate; (b) forming a second layer of a second material on at least a portion of the first layer, which second layer is imprinted with the patterned features; (c) removing at least portions of the second layer to extend the patterned features to the first layer; and (d) removing at least portions of the first layer to extend the patterned features to the substrate; wherein the first layer and the second layer may be exposed to an etching process that undercuts the patterned features, and the first material may be lifted-off.
Abstract:
A method is provided for displaying data received as a composite video data stream, each frame of the composite data stream being composed of a field of data defining a first video display and a subsequent field defining a second video display. The composite video data stream is received and during first and third phases of a set of processing phases, the fields of data defining the first video display are stored in a first object buffer in memory. During second and fourth phases of the set of processing phases, the fields of data defining the second display are stored in a second object buffer in memory. During the first and third phases, the fields of data stored in the first object buffer are retrieved to generate the first display and during the second and fourth phases, the fields of data stoned in the second object buffer are retrieved to generate the second display.