Abstract:
A communication system includes a first wireless communication device disposed onboard a vehicle system having two or more propulsion-generating vehicles that are mechanically interconnected with each other. The communication system also includes a controller configured to be disposed onboard the vehicle system and operatively connected with the first wireless communication device in order to control operations of the device. The controller is configured to direct the first wireless communication device to switch between operating in an off-board communication mode and an onboard communication mode. When the first wireless communication device is operating in the off-board communication mode, the device is configured to receive remote data signals from a location that is disposed off-board of the vehicle system. When the first wireless communication device is operating in the onboard communication mode, the device is configured to communicate local data signals between the propulsion-generating vehicles of the vehicle system.
Abstract:
A method includes determining a state of operational devices in a second group coupled with a second router onboard a second vehicular unit of a vehicle consist, registering an operational device in the second group based on the determined state, and transmitting a data message from an operational device in a first group of operational devices to the second router via a first router and a communication pathway of the vehicle consist. The first group is coupled with the first router onboard a first vehicular unit. The operational devices in the first and second groups perform functions of the respective first vehicular unit and second vehicular unit. The first and second routers are connected with each other by the communication pathway. The method also includes communicating the data message to the at least one of the operational devices in the second group that are registered with the second router.
Abstract:
A method includes receiving, at a data hub onboard an asset, a new configuration file, a service program, and a software update of a software application of the asset from a remote location. The data hub includes a current configuration file that indicates a current configuration state of the software application. The new configuration file indicates an updated configuration state of the software application with the software update. The service program includes work instructions for applying the updated configuration state to the software application. The method includes displaying the current configuration file and the new configuration file onboard the asset using the data hub. The method also includes updating the software application with the updated configuration state according to the work instructions of the service program using the data hub.
Abstract:
A method includes receiving, at a data hub onboard an asset, a new configuration file, a service program, and a software update of a software application of the asset from a remote location. The data hub includes a current configuration file that indicates a current configuration state of the software application. The new configuration file indicates an updated configuration state of the software application with the software update. The service program includes work instructions for applying the updated configuration state to the software application. The method includes displaying the current configuration file and the new configuration file onboard the asset using the data hub. The method also includes updating the software application with the updated configuration state according to the work instructions of the service program using the data hub.
Abstract:
A system includes a first communication module and a second communication module. The first communication module is configured to be disposed onboard a first vehicle of a vehicle consist, and the second communication module is configured to be disposed onboard a second vehicle of the vehicle consist. The first and second communication modules are communicatively coupled by first and second communication paths. The first and second communication modules are configured to communicate first information over the first communication path and second information over the second communication path. At least a portion of the first information includes a first command corresponding to a first operation of at least one of the first or second vehicles. At least a portion of the second information includes a second command corresponding to the first operation.
Abstract:
A body coil support structure includes an elongate support member. The elongate support member defines an opening and an examination axis passing through the opening along a length of the elongate support member. The opening is configured to accept an object to be imaged. The elongate support member has a target shape for use during operation of the MRI system, with the elongate support member configured to be subjected to an operational load during operation. In a design state, the elongate support member defines a design shape, with the elongate support member not subjected to the operational load in the design state. In an installed state after installation in the MRI system, the elongate support member defines an operational shape. The elongate support member is subjected to the operational load in the installed state. The operational shape is closer to the target shape than is the design shape.
Abstract:
A control system including a measurement module configured to receive motor measurements that represent operating parameters of plural traction motors of a common vehicle system as the vehicle system propels along a route. The control system also includes an analysis module configured to compare the motor measurements to an expected measurement. The expected measurement corresponds to a designated motor type. The analysis module is configured to determine that at least one of the traction motors is different from the designated motor type based on comparing the motor measurements to the expected measurement.
Abstract:
A control system including a measurement module configured to receive motor measurements that represent operating parameters of plural traction motors of a common vehicle system as the vehicle system propels along a route. The control system also includes an analysis module configured to compare the motor measurements to an expected measurement. The expected measurement corresponds to a designated motor type. The analysis module is configured to determine that at least one of the traction motors is different from the designated motor type based on comparing the motor measurements to the expected measurement.
Abstract:
A system includes a first controller, a data acquisition device, a friction modification unit, and a friction management controller. The first controller is configured to obtain an operational setting for a vehicle, and to output a first signal relating to the operational setting for controlling the vehicle. The data acquisition device is configured to obtain operational data of the vehicle as the vehicle travels, and to provide the operational data to the first controller. The first controller is configured to obtain a difference between the operational data and the operational setting, and to adjust the first signal based on the difference. The friction modification unit is configured to modify a friction characteristic of a surface of the route. The friction management controller is configured to direct the friction modification unit to modify the friction characteristic of the surface of the route based on the operational setting.
Abstract:
A system is provided for controlling a powered unit having an engine configured to operate using a plurality of fuel types each in a corresponding fuel tank. The system includes a controller operable to transmit a first set of control signals including a first set of valve signals to the each fuel tank based at least in part on a first stored engine operating profile to control amounts of fuel from each fuel tank to the engine. The controller can transmit a second set of control signals including a second set of valve signals to each fuel tank based at least in part on a second stored engine operating profile to control amounts of fuel from each fuel tank to the engine. Further, the controller can switch, by transmitting either the first set of control signals or the second set of control signals, between a first operating condition associated with a first external domain and a second condition associated with a second external domain. The first operating condition is associated with the first stored engine operating profile, and the second operating condition is associated with the second stored engine operating profile.