Abstract:
A brake handle for emergency braking in an emergency electric brake system is disclosed. The emergency electric brake system may comprise a brake control unit (BCU), an electric braking actuating controller (EBAC), and one or more electromechanical brake actuators (EBA). The brake handle may be in direct electronic communication with the EBAC to allow an independent emergency braking input to the EBAC, thus bypassing the BCU in the event of an emergency braking situation.
Abstract:
Systems and methods for assessing runway conditions are disclosed. The system may comprise a brake control unit having an internal inertial sensor. The brake control unit may be configured to calculate a runway coefficient of friction to assess surface conditions of the runway. The brake control unit may monitor braking in an aircraft to detect a skid condition. In response to detecting the skid condition, the brake control unit may calculate an aircraft deceleration of the aircraft with the inertial sensor. The brake control unit may estimate the runway coefficient of friction based on the aircraft deceleration, an aerodynamic drag force of the aircraft, and a thrust reverse force of the aircraft.
Abstract:
An electronic actuator control system and method (“system”) are provided. The system may comprise an electro-mechanical actuator (EMA) configured to generate a force and an electro-mechanical actuator controller (EMAC) electrically coupled to the EMA. The EMAC may include a non-transitory memory communicating with the EMAC, the non-transitory memory having instructions stored thereon that, in response to execution by the EMAC, cause a processor to perform operations. The operations carried out by the EMAC may comprise commanding the EMA to apply a force, determining an expected voltage in response to the force, measuring a voltage generated by the EMA, and comparing the voltage generated by the EMA to the expected voltage.
Abstract:
Methods and systems are provided for improved autobraking systems for aircraft. Such systems and methods include a pedal balance controller configured to receive one of a yaw angle, a yaw speed, and a wheel speed, and an autobrake pedal executive module configured to send an autobrake left pedal command and an autobrake right pedal command to a pedal executive module, wherein the pedal executive module is configured to execute a pedal command. These systems and methods may assist a pilot in maintaining a desired course during autobraking.
Abstract:
A braking system is disclosed. In various embodiments, the brake system includes a brake assembly; a hydraulic braking subsystem having a hydraulic brake actuator configured to operate the brake assembly; and an electric braking subsystem having an electric brake actuator configured to operate the brake assembly.
Abstract:
A method of taxiing an aircraft may comprise: determining, via a brake controller, whether the aircraft is taxiing with a first thrust provided from a first side of the aircraft, a second thrust from a second side of the aircraft, or both the first thrust and the second thrust; and modifying, via the brake controller, a first brake pressure supplied to a first brake disposed on the first side of the aircraft as a function of pedal deflection in response to the taxiing with the first thrust only.
Abstract:
A system for performing frequency response health monitoring of a servo valve prior to flight of an aircraft may comprise: the servo valve; and a brake controller in electrical communication with the servo valve, the brake controller configured to: determine the brake controller is powering up, supply a variable current to the servo valve to perform the frequency response health monitoring to the servo valve in response to determining the brake controller is powering up, and determine a health status of the servo valve based on the frequency response health monitoring.
Abstract:
A braking system is disclosed. In various embodiments, the braking system includes a brake stack; an actuator configured to apply a compressive load to the brake stack; a servo valve coupled to a power source and to the actuator; and a brake control unit configured to operate the servo valve at a current ramp rate in response to a pedal deflection signal, wherein the current ramp rate is determined via a relationship between the current ramp rate and a brake pressure command signal.
Abstract:
An autobrake brake control system includes a shutoff valve configured to receive a hydraulic fluid, a servo valve configured to receive the hydraulic fluid from the shutoff valve and configured to provide the hydraulic fluid to apply braking force to a wheel via a hydraulic line, and a brake control unit in electronic communication with the shutoff valve. The brake control unit is configured to detect a weight-on-wheel (WOW) condition of a nose landing gear, and the brake control unit controls the shutoff valve in response to detecting the WOW condition of the nose landing gear.
Abstract:
A braking system is disclosed. In various embodiments, the brake system includes a brake assembly; a hydraulic braking subsystem having a hydraulic brake actuator configured to operate the brake assembly; and an electric braking subsystem having an electric brake actuator configured to operate the brake assembly.