Abstract:
Methods and systems for using unique identifiers to retrieve configuration data for tag devices are described herein. An example method may involve obtaining a unique identifier associated with a tag device. The tag device may include an antenna and a sensor configured to obtain sensor readings that can be wirelessly transmitted to a reader device via the antenna. The method may also involve determining configuration parameters associated with the tag device based on the unique identifier. The method may further involve storing, in at least one memory, at least a portion of the configuration parameters in association with the unique identifier.
Abstract:
A system includes one or more optical emitters, a transceiver, and a body mountable device. The optical emitters emit light and are configured to be used in luminaires. The transceiver is coupled to receive input data from a data network and coupled to selectively modulate the optical emitters to transmit the optical data. Selectively modulating the optical emitters is in response to the input data. The body mountable device includes a photodetector coupled to receive the optical data and processing circuitry configured to initiate an action in response to receiving the optical data from the photodetector.
Abstract:
In one aspect of the present disclosure, a method involves obtaining, by a body-mountable device, sensor data, where the body-mountable device includes a data storage. The method further involves making a determination that each condition in a condition set has been satisfied. In addition, the method involves responsive to making the determination that each condition in the condition set has been satisfied, storing the obtained sensor data in the data storage.
Abstract:
An eye-mountable device includes an enclosure material, a capacitive sensor system, and a controller. The enclosure material has a concave surface and a convex surface. The concave surface is configured to be removeably mounted over a cornea and the convex surface is configured to be compatible with eyelid motion when the concave surface is so mounted. The capacitive sensor system is disposed within the enclosure material. The capacitive sensor system has at least one capacitance value that varies with changes in a gazing direction of the cornea. The controller is disposed within the enclosure material and electrically connected to the capacitive sensor system. The controller is configured to measure the capacitance value of the capacitive sensor system to detect the changes in the gazing direction.
Abstract:
Apparatus, systems and methods for facilitating iris-scanning contact lenses and/or biometric identification employing iris scanning contact lenses are provided. In one implementation, the contact lens can include: a transparent substrate formed to cover at least a portion of an iris of an eye; and a circuit. The circuit can include: one or more light sensors disposed on or within the transparent substrate and that detects light filtered through the iris and incident on the one or more light sensors; readout circuitry, operably coupled to the one or more light sensors, that outputs information indicative of the light filtered through the iris and incident on the one or more light sensors; and a power component that supplies power to the readout circuitry. In various implementations, the contact lens can be employed in systems and/or methods associated with authentication and identification.
Abstract:
A potentiostat includes a voltage regulator, a current mirror, a capacitor, a comparator, a current source, and a counter. The voltage regulator maintains a voltage on a working electrode of an electrochemical sensor. The current mirror develops a mirror current that mirrors an input current from the working electrode. The capacitor is alternately charged by the mirror current, causing the capacitor voltage to increase at a rate related to the current's magnitude, and discharged by a control current, causing the capacitor voltage to decrease. The comparator outputs a waveform that includes upward and downward transitions based on the variations of the capacitor voltage. The current source produces the control current based on the waveform. The counter counts the number of upward or downward transitions in the waveform during a predetermined sampling period to produce a digital output. The digital output is representative of the magnitude of the input current.
Abstract:
A reader for communicating with both an eye-mountable device and a display device is provided. The reader can transmit radio frequency power to a tag that is part of the eye-mountable device. The reader can communicates with the tag using a first protocol. Communicating with the tag can include having the reader request data from the tag and receive the requested data from the tag. The reader can process the received data. The reader can store the processed data. The reader can communicates with the display device using a second protocol, where the first and second protocols can differ. Communicating with the display device can include having the reader transmit the stored data to the display device. The display device can receive the transmitted data, process the transmitted data, and generate one or more displays including the transmitted and/or processed data.
Abstract:
An eye-mountable device includes a controller embedded in a polymeric material configured for mounting to a surface of an eye. The controller is electrically connected to an antenna included in the eye-mountable device. The controller is configured to: (i) receive an indication of an interrogation signal via the antenna, (ii) responsive to the interrogation signal, output a substantially unique identification sequence; and (iii) use the antenna to communicate the substantially unique identification sequence. The substantially unique identification sequence can then be used by external readers to associate the eye-mountable device with device-specific information without storing such information on the eye-mountable device.
Abstract:
A body-mountable device can include a transparent material and a substrate at least partially embedded in the transparent material. The transparent material can have a mounting surface and a surface opposite the mounting surface. A light source can be disposed on the substrate and configured to emit light through the surface opposite the mounting surface. The light source can be controlled by circuitry disposed on the substrate. The circuitry can be configured to receive modulation instructions and modulate the light emitted by the light source based on the modulation instructions.
Abstract:
Apparatus, systems and methods employing contact lens with capacitive sensors are provided. In some aspects, a contact lens includes: a substrate; a capacitive sensor, disposed on or within the substrate, that senses a capacitance on the contact lens; and a circuit disposed on or within the substrate. In some aspects, the circuit can include a capacitance analysis component that determines a condition of an eyelid associated with the eye over which the contact lens is disposed and/or a parameter associated with the eye over which the contact lens is disposed. In some aspects, the condition can be a blink of an eyelid. In some aspects, the parameter can be at least one of a pressure of an object in proximity to the contact lens, a thickness or type of a layer of material disposed on or within the contact lens or a composition of material on the contact lens.