Abstract:
Various arrangements for using multiple wavelengths of electromagnetic radiation to detect smoke by a smoke detector are present. Multiple modes of the smoke detector may be used in which a first wavelength of electromagnetic radiation is emitted into a smoke chamber while a second electromagnetic radiation emitter is disabled, a period of time is waited, and a second wavelength of electromagnetic radiation is emitted into the smoke chamber while the first emitter is disabled. Depending on the mode of the smoke detector, the period of wait time may be varied.
Abstract:
An eyepiece for a head wearable display includes a light guide component for guiding display light received at a peripheral location and emitting the display light at a viewing region. The light guide component includes an eye-ward facing surface having a reflection portion and a viewing portion, a folding surface oriented to reflect the display light received into the light guide component to the reflection portion of the eye-ward facing surface, and a first interface surface oriented to receive the display light reflected from the reflection portion of the eye-ward facing surface. A partially reflective layer is disposed on the first interface surface in the viewing region to reflect the display light through viewing portion of the eye-ward facing surface.
Abstract:
A lightguide assembly including structures to provide for outcoupling of light from an internal reflection structure. In an embodiment, a lightguide assembly includes light transmissive bodies forming respective corrugations which are coupled to one another. Optical coatings are variously disposed between the respective corrugations, wherein the optical coatings provide for redirection of light from the lightguide assembly. In another embodiment, optical coatings are each applied to a respective one of alternate facets of a corrugation. Polymer film portions provide mechanical support for the optical coatings during application to the corrugation.
Abstract:
An apparatus for providing adjustable transparency to an optical element of a head wearable display includes an electro-chromic film disposed across the optical element to adjust a transparency of the optical element to ambient light and a transparency controller coupled to control the electro-chromic film with a drive signal to decrease the transparency of the optical element as the brightness of the ambient light increases. The transparency controller includes a scaling circuit coupled to receive a power signal from a power source and coupled to output the driving signal to the electro-chromic film to control the transparency of the optical element. The scaling circuit scales the power signal to generate the driving signal. The transparency controller further includes a control circuit coupled to the scaling circuit to control the scaling applied by the scaling circuit.
Abstract:
An optical apparatus for a see-through near-to-eye display includes a diffractive optical combiner, one or more refractive correction lenses, and a diffractive correction element. The diffractive optical combiner has an eye-ward side and an external scene side and includes a reflective diffraction grating that is at least partially reflective to image light incident through the eye-ward side and at least partially transmissive to external scene light incident through the external scene side. The one or more refractive correction lenses are disposed in an optical path of the image light to aid in pre-correcting aberrations induced in the image light after reflection off of the diffractive optical combiner. The diffractive correction element is disposed in the optical path of the image light to pre-compensate for lateral color aberrations induced in the image light after reflection off of the diffractive optical combiner.
Abstract:
A head-wearable display includes a collimated light source, a beam steering mechanism, and a synchronization controller. The collimated light source selectively emits collimated light. The beam steering mechanism is optically coupled to receive the collimated light and angularly scans the collimated light between beam steering states that each redirect the collimate light to a different angular direction along at least one angular dimension. The beam steering mechanism is coupled to scan the collimated light across an eyebox. The synchronization controller is coupled to the collimated light source and the beam steering mechanism to synchronize selective emission of the collimated light from the collimated light source with the beam steering states of the beam steering mechanism to repetitiously draw an image in the eyebox.
Abstract:
This specification describes technologies relating to detecting anomalous user accounts. A computer implemented method is disclosed which evaluates an unknown status user account. The method described compares features associated with a plurality of known anomalous user accounts stored in a database to features present in the unknown account. A correlation value corresponding to the probability of a specific feature occurring in a particular anomalous user account is calculated and a dependence value corresponding to the degree of dependence between the given feature and at least one other feature is also calculated. A subset of features in the unknown account is generated comprising those features that possess a correlation value less than a threshold value and a dependence value below a maximum correlation value. A risk score for the unknown account is calculated by selecting those features from the subset that maximizes the correlation value. The unknown account is then reviewed by an account reviewer if the risk score exceeds a threshold value.
Abstract:
An optical apparatus includes an optical combiner, an image lens, and an external scene lens. The optical combiner has an eye-ward side and an external scene side and includes a partially reflective diffraction grating that is at least partially reflective to image light incident through the eye-ward side and at least partially transmissive to external scene light incident through the external scene side. A first mount is positioned to hold the image lens in an optical path of the image light to apply a first corrective prescription to the image light. A second mount is positioned to hold an external scene lens over the external scene side of the optical combiner to apply a second corrective prescription to the external scene light. The optical combiner combines the image light with the scene light to form a combined image that is corrected according to the first and second corrective prescriptions.
Abstract:
An eyepiece includes a viewing region to emit display light out of the eyepiece along an eye-ward direction, an input end peripherally located from the viewing region and configured to receive the display light into the eyepiece, one or more optical elements positioned to direct the display light received into the eyepiece out of the viewing region along the eye-ward direction, a first side through which ambient scene light is received into the eyepiece, a second side out of which the ambient scene light and the display light are passed along the eye-ward direction, and a photo-chromic coating disposed on the first side and the second side, the photo-chromic coating to darken in the presence of UV light.
Abstract:
An optical apparatus includes an optical combiner, an image lens, and an external scene lens. The optical combiner has an eye-ward side and an external scene side and includes a partially reflective diffraction grating that is at least partially reflective to image light incident through the eye-ward side and at least partially transmissive to external scene light incident through the external scene side. A first mount is positioned to hold the image lens in an optical path of the image light to apply a first corrective prescription to the image light. A second mount is positioned to hold an external scene lens over the external scene side of the optical combiner to apply a second corrective prescription to the external scene light. The optical combiner combines the image light with the scene light to form a combined image that is corrected according to the first and second corrective prescriptions.