摘要:
In one embodiment, semiconductor die having non-rectangular shapes and die having various different shapes are formed and singulated from a semiconductor wafer.
摘要:
A method for forming a transistor having insulated gate electrodes and insulated shield electrodes within trench regions includes forming dielectric stack overlying a substrate. The dielectric stack includes a first layer of one material overlying the substrate and a second layer of a different material overlying the first layer. Trench regions are formed adjacent to the dielectric stack. After the insulated shield electrodes are formed, the method includes removing the second layer and then forming the insulated gate electrodes. Portions of gate electrode material are removed to form first recessed regions, and dielectric plugs are formed in the first recessed regions using the first layer as a stop layer. The first layer is then removed, and spacers are formed adjacent the dielectric plugs. Second recessed regions are formed in the substrate self-aligned to the spacers.
摘要:
In one embodiment, high doped semiconductor channels are formed in a semiconductor region of an opposite conductivity type to increase the capacitance of the device.
摘要:
A semiconductor component that includes a field plate and a semiconductor device and a method of manufacturing the semiconductor component. A semiconductor material includes an epitaxial layer disposed on a semiconductor substrate. A trench having an upper portion and a lower portion is formed in the epitaxial layer. A portion of a field plate is formed in the lower portion of the trench, wherein the field plate is electrically isolated from trench sidewalls. A gate structure is formed in the upper portion of the trench, wherein a gate oxide is formed from opposing sidewalls of the trench. Gate electrodes are formed adjacent to the gate oxide formed from the opposing sidewalls and a dielectric material is formed adjacent to the gate electrode. Another portion of the field plate is formed in the upper portion of the trench and cooperates with the portion of the field plate formed in the lower portion of the trench to form the field plate.
摘要:
In one embodiment, an edge seal region of a semiconductor die is formed by forming a first dielectric layer on a surface of a semiconductor substrate near an edge of the semiconductor die and extending across into a scribe grid region of the semiconductor substrate. Another dielectric layer is formed overlying the first dielectric layer. An opening is formed through the first and second dielectric layers. The second dielectric layer is used as a mask for forming a doped region on the semiconductor substrate through the opening. A metal is formed that electrically contacts the doped region and an exterior edge of the first dielectric layer within the opening.
摘要:
An electronic device can include a buried conductive region, a buried insulating layer over the buried conductive region, and a semiconductor layer disposed over the buried insulating layer, wherein the semiconductor layer has a primary surface and an opposing surface, and the buried conductive region is disposed closer to the opposing surface than to the primary surface. The electronic device can also include a current-carrying electrode of a first transistor, wherein the current carrying electrode is disposed along the primary surface and spaced apart from the buried conductive layer. The electronic device can also include a vertical conductive structure extending through the buried insulating layer, wherein the vertical conductive structure is electrically connected to the current-carrying electrode and the buried conductive region.
摘要:
In one embodiment, high doped semiconductor channels are formed in a semiconductor region of an opposite conductivity type to increase the capacitance of the device.
摘要:
In one embodiment, a semiconductor device is formed having sub-surface charge compensation regions in proximity to channel regions of the device. The charge compensation trenches comprise at least two opposite conductivity type semiconductor layers. A channel connecting region electrically couples the channel region to one of the at least two opposite conductivity type semiconductor layers.
摘要:
In one embodiment, an edge seal region of a semiconductor die is formed by forming a first dielectric layer on a surface of a semiconductor substrate near an edge of the semiconductor die and extending across into a scribe grid region of the semiconductor substrate. Another dielectric layer is formed overlying the first dielectric layer. An opening is formed through the first and second dielectric layers. The second dielectric layer is used as a mask for forming a doped region on the semiconductor substrate through the opening. A metal is formed that electrically contacts the doped region and an exterior edge of the first dielectric layer within the opening.
摘要:
A semiconductor component that includes a field plate and a semiconductor device and a method of manufacturing the semiconductor component. A semiconductor material includes an epitaxial layer disposed on a semiconductor substrate. Field plate trenches extend into the semiconductor material and field plates are formed in the field plate trenches. A gate trench is formed between two adjacent field plate trenches and another gate trench is formed adjacent one of the field plate trenches. Gate structures are formed in the gate trenches, wherein each gate structure includes a gate oxide and a gate conductor. A conductor electrically couples the field plates together.