Abstract:
A method and a system for building a short-wave, medium-wave and long-wave infrared spectrum dictionary are provided. The method includes: building an infrared three-primary-color chromaticity diagram by using infrared spectrum response curves of an infrared three-primary-color sensor group; performing weighted combination on the infrared spectrum response curves; performing multi-scale discretization on the infrared three-primary-color chromaticity diagram, clustering chromaticity coordinates generated by discretization into different groups, performing weighted combination on the infrared spectrum response curves corresponding to the chromaticity coordinates of each point in the groups, generating a new image-space infrared spectrum, and adding the new image-space infrared spectrum to an initial image-space infrared spectrum dictionary; performing weighted combination on object-space Planck curves associated with three different temperatures to build an object-space Planck spectrum dictionary; and using the final image-space infrared spectrum dictionary and the object-space Planck spectrum dictionary to build the short-wave, medium-wave and long-wave infrared spectrum dictionary.
Abstract:
A construction method and system for a visible near-infrared spectrum dictionary is provided. The method includes: constructing a four-primary color chromaticity cone by using normalized spectral response curves of four primary colors of a visible light camera as spectral basis functions; performing weighted combination on the spectral basis functions and forming an initial visible near-infrared spectrum dictionary; acquiring points on the four-primary color chromaticity cone on the basis of the initial visible red infrared spectrum dictionary according to different spectral resolutions and performing discretization, and forming words in the initial visible near-infrared spectrum dictionary; clustering chromaticity coordinates corresponding to the words into different groups, performing weighted combination on multi-scale spectral response curves corresponding to different group types, generating phrases or sentences in the dictionary, and generating a final visible near-infrared spectrum dictionary. The visible near-infrared spectrum dictionary can support a novel computational spectrometry imaging spectrometer.
Abstract:
A sequence time window amplitude-phase-frequency characteristics analysis method and system for underwater vehicle power frequency electromagnetic field disturbance are provided. The method includes: establishing a power grid dipole group model, emulating and calculating to obtain background field intensity data of a test location, and constructing an emulated background field database; acquiring measured background field data, comparing the emulated data with the measured data, and providing a relative error; calculating a background field intensity and underwater vehicle target disturbance under the action of the above dipole group, and establishing a measured target signal database; and performing actual measurement according to an underwater vehicle motion and detection topology, performing a Fourier transform and Fourier sliding window decomposition after acquiring original data, and acquiring an amplitude spectrum and a spectrogram of an underwater vehicle target disturbance signal.
Abstract:
A master control system for a remote-sensing satellite image processing device, the system including: a master control management module, a first FPGA module, and a second FPGA module. The master control management module is in connection and communication with the first FPGA module, the second FPGA module, and a housekeeping computer. The first FPGA module is in connection and communication with the second FPGA module and a remote-sensing satellite image processing device. The master control management module is adapted to perform assignment of tasks. The first FPGA module is adapted to communicate with a processor in the satellite image processing device, monitor an operation state of the satellite image processing device, send the operation state information to the master control management module, receive a task assignment command issued by the master control management module, and transmit the task assignment command to the satellite image processing device.
Abstract:
The invention discloses a direction-adaptive image deblurring method, comprising steps of: (1) defining a minimum cost function for deblurring an image by direction-adaptive total variation regularization; (2) converting the unconstrained minimization problem in step (1) to a constrained problem by auxiliary variables d1=Hu, d2=∇xu and d3=∇yu; (3) obtaining a new minimum cost function from the constrained problem in step (2) by introducing penalty terms; and (4) converting the minimization problem in step (3) to an alternating minimization problem about u, d1, d2 and d3, where a minimum of a variable is calculated as other variables are determined, and obtaining a deblurred image by solving the alternating minimization problem by an alternative and iterative minimization process. Compared with the prior art, the present invention obtains a new direction-adaptive cost function by introducing local direction information into a maximum a posteriori algorithm, solves a problem of edges of an image restored by traditional TV regularization terms being blurred, and can restore images of complex blurring types or images with abundant textures.
Abstract:
A de-noising method for remote images of ground buildings using spectrum constraints. The method includes: 1) obtaining a reference image of ground buildings from a remote image database of the ground buildings, performing a Fourier transformation on the reference image to obtain an amplitude spectrum, and performing a threshold segmentation, an erosion operation and a dilation operation successively on the amplitude spectrum to obtain a binary template of spectrum of the ground buildings; and 2) obtaining a real-time image of the ground buildings by a high-speed aircraft, performing a Fourier transformation on the real-time image to obtain a spectrum, filtering the spectrum of the real-time image in frequency domain by the binary template of spectrum of the ground buildings, and performing an inverse Fourier transformation thereon to generate a filtered real-time image of the ground buildings.
Abstract:
A method for detecting spectral characteristics of multi-band moving objects. The method includes: 1) dividing a full field of view into several subfields of view, and scanning and extracting suspected objects in each subfield one by one; 2) correlating interrelated suspected objects in adjacent subfields via coordinates to determine objects of interest that exist in the full field of view; 3) calculating the speeds of the objects of interest; 4) calculating average speed of all of the objects of interest and classifying the objects of interest according to their average speed; 5) compensating and rectifying the objective spectrum obtained from calculation; and 6) matching the compensated and rectified objective spectrum with a spectrum fingerprint database whereby realizing recognition of the multi-band moving objects.
Abstract:
A radiation-hardened storage unit, including a basic storage unit, a redundant storage unit, and a two-way feedback unit. The basic storage unit includes a first PMOS transistor, a second PMOS transistor, a third PMOS transistor, and a fourth PMOS transistor. The first PMOS transistor and the second PMOS transistor are read-out access transistors. The third PMOS transistor and the fourth PMOS transistor are write-in access transistors. The redundant storage unit includes a fifth PMOS transistor, a sixth PMOS transistor, a seventh PMOS transistor, and an eighth PMOS transistor. The fifth PMOS transistor and the sixth PMOS transistor are read-out access transistors. The seventh PMOS transistor and the eighth PMOS transistor are write-in access transistors. The two-way feedback unit is configured to form a feedback path between the storage node and the redundant storage node.