Abstract:
Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment are provided. “Internet-of-Things” (IoT) functionality is provided for pool and spa equipment in a flexible and cost-effective manner. Network connectivity and remote monitoring/control of pool and spa equipment is provided by various components such as a network communication and local control subsystem installed in pool/spa equipment, and other components. Also disclosed are various control processes (“pool logic”) which can be embodied as software code installed in any of the various embodiments of the present disclosure.
Abstract:
A pool or spa control system includes, a main control panel housing a motherboard, relay bank, and local terminal. The motherboard includes a processor in two-way communication with a relay bank socket via an internal bus. The relay bank is connectable to the relay bank socket and includes a processor, memory, plurality of relays, connector, and an internal bus establishing two-way communication between the relay bank processor and the motherboard processor when the relay bank is connected to the relay bank socket. The local terminal includes a control processor, user interface, and memory, and is in two-way communication with the motherboard processor for allowing user control of the system. The control processor automatically discovers and assigns the relay bank a network address upon connection of the relay bank to the motherboard relay bank socket, and the relay bank returns relay bank parameter information, which the local terminal stores in memory.
Abstract:
A method of integrating a relay bank for use with a pool or spa control system includes, establishing an electrical connection between the relay bank and a control panel, discovering the relay bank by a control panel processor, and assigning the relay bank a network address upon discovery thereof. A method of integrating a smart component for use with a pool or spa control system includes, establishing an electrical connection between the smart component and a control panel, discovering the smart component by a control panel processor, and assigning the smart component a network address upon discovery thereof. A method of integrating an expansion panel for use with a pool or spa control system includes, establishing an electrical connection between the expansion panel and a control panel, discovering the expansion panel by a control panel processor, and configuring the expansion panel upon discovery thereof.
Abstract:
Disclosed is a system for controlling pool/spa components. More particularly, disclosed is a system for controlling pool/spa components including a display screen and one or more processors presenting a control user interface for display on the display screen, wherein the control user interface includes a home screen comprising a first portion containing a first plurality of buttons and/or controls for controlling a first group of the plurality of pool/spa components associated with a first body of water, and a second portion containing a second plurality of buttons and/or controls for controlling a second group of the plurality of pool/spa components associated with a second body of water.
Abstract:
An underwater light having a sealed polymer housing includes a rear housing component formed at least in part from a thermally conductive and electrically insulative material, an electronic assembly having at least one light-emitting element mounted thereto, the electronic assembly in thermal communication with the rear housing component, and a lens mounted to the rear housing component and forming a watertight seal therebetween, the lens and the rear housing component enclosing the electronic assembly. At least a portion of the rear housing component conducts heat away from the electronic assembly to cool the electronic assembly.
Abstract:
A system and method for an accent lighting system is provided. The system includes a plurality of underwater luminaires each having a plurality of light emitting diodes, and a junction box controller housing a plurality of electrical components for generating electrical signals for controlling the plurality of underwater luminaries. The junction box controller can be mounted to an electrical conduit and a plurality of cables can connect the plurality of underwater luminaires with the junction box controller. An underwater luminaire can include a heat sink and a flexible circuit board having a plurality of light emitting diodes mounted on the heat sink. The flexible circuit board transfers heat from the light emitting diodes to the heat sink. The underwater luminaire can also include a wiring harness for connecting the underwater luminaire to a cable.
Abstract:
A system for monitoring and controlling aquatic equipment is provided. The system includes a variable speed pump, a controller configured to determine operational parameters of the variable speed pump and to control operation of the variable speed pump, and a wireless communication system operatively coupled to the controller. The wireless communication subsystem is configured to transmit one or more of the operational parameters of the variable speed pump to a device over a WiFi wireless and/or a Bluetooth wireless connection. The wireless communication subsystem is configured to receive one or more control parameters from the device, and the controller controls operation of the variable speed pump based on the one or more control parameters.
Abstract:
Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment are provided. “Internet-of-Things” (IoT) functionality is provided for pool and spa equipment in a flexible and cost-effective manner. Network connectivity and remote monitoring/control of pool and spa equipment is provided by various components such as a network communication and local control subsystem installed in pool/spa equipment, and other components. Also disclosed are various control processes (“pool logic”) which can be embodied as software code installed in any of the various embodiments of the present disclosure.
Abstract:
A pool or spa system includes networked pool or spa devices that can be dynamically configured with network addresses by a controller. The controller can transmit a device discovery request on a network and can receive a discovery response from pool or spa devices that require a network address. The system determines and assigns the network addresses for the pool or spa devices based on unique device identifiers associated with the responding pool or spa devices. The network addresses assigned to the pool or spa device are transmitted to the pool or spa device to be used by the pool or spa devices to communicate with the controller over the network. The system can be used to discover and assign addresses to various types of pool or spa devices, such as pumps, underwater lights, chlorinators, water feature controllers, remote controllers, and/or other types of devices.
Abstract:
Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment are provided. “Internet-of-Things” (IoT) functionality is provided for pool and spa equipment in a flexible and cost-effective manner. Network connectivity and remote monitoring/control of pool and spa equipment is provided by various components such as a network communication and local control subsystem installed in pool/spa equipment, and other components. Also disclosed are various control processes (“pool logic”) which can be embodied as software code installed in any of the various embodiments of the present disclosure.