摘要:
An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween. Optical power transfer between the device and the transmission waveguide through the external-transfer waveguide is thereby enabled. The transmission waveguide may preferably comprise a planar waveguide on a waveguide substrate.
摘要:
An optical apparatus comprises a substrate, first and second transmission optical elements on the substrate, and an optical component (such as an isolator) and focusing optical element(s) on the substrate between the transmission elements. Transmission elements may include planar waveguide(s) formed on the substrate and/or optical fiber(s) mounted in groove(s) on the substrate. The focusing element(s) may include: gradient-index (GRIN) segment(s) mounted on the substrate or spliced onto a fiber, a focusing segment(s) of a planar waveguide, ball lens(es), aspheric lens(es), and/or Fresnel lens(es). A dual-lens optical assembly comprises a pair of GRIN segments secured to a substrate in one or more grooves, and may be formed from a common length of GRIN optical medium. An optical component (such as an isolator) is positioned between the paired GRIN segments, and optical power is transmitted by the dual-lens assembly between planar waveguide(s) and/or fiber(s) through the optical component.
摘要:
A method for micro-hermetic packaging of an optical device comprises: forming a micro-hermetic cavity on a substrate; providing a transmission optical waveguide transferring optical power between the interior and the exterior of the micro-hermetic cavity; fabricating or mounting at least one optical device within the micro-hermetic cavity; enabling optical power transfer between the optical device and the transmission optical waveguide; and sealing the optical device within the micro-hermetic cavity. The micro-hermetic cavity may be fabricated of a size comparable to the optical device, and many such cavities may be simultaneously fabricated on a single substrate using wafer-scale processing. The transmission optical waveguide, electrical feed-throughs, and/or other monitoring/controlling components may be provided with the micro-hermetic cavity on the same substrate, or as a separate component and/or on a separate substrate. Alternatively, the optical device, transmission optical waveguide, and any other associated components may be embedded in transparent material for hermetic sealing.
摘要:
A photodetector comprises a semiconductor substrate with entrance and reflecting faces formed at the substrate upper surface. The reflecting face forms an acute angle with the substrate surface and is positioned so that an optical beam transmitted through the entrance face into the substrate is internally reflected from the reflecting face toward the substrate upper surface. A photodetector active region is formed on the substrate upper surface and is positioned so that the reflected optical beam impinges on the active region. The photodetector may be mounted on a second substrate for receiving an optical beam from a planar waveguide formed on the second substrate or an optical fiber mounted in a groove on the second substrate.
摘要:
A photodetector comprises a semiconductor substrate with entrance and reflecting faces formed at the substrate upper surface. The reflecting face forms an acute angle with the substrate surface and is positioned so that an optical beam transmitted through the entrance face into the substrate is internally reflected from the reflecting face toward the substrate upper surface. A photodetector active region is formed on the substrate upper surface and is positioned so that the reflected optical beam impinges on the active region. The photodetector may be mounted on a second substrate for receiving an optical beam from a planar waveguide formed on the second substrate or an optical fiber mounted in a groove on the second substrate.
摘要:
Techniques are provided for implementing a burst mode optical receiver capable of maintaining a stable gain profile in response to a burst signal. The optical receiver has a photodiode in balanced circuit configuration with a separate RF amplifier stage connected to each terminal of the photodiode. The two RF amplifier stages are coupled to biasing voltage sources that are inverted in comparison to the terminal connections and that, in some examples, each contain a field effect transistor (FET) that having a gate that is controlled in response to a sensed voltage. The burst mode optical receiver may be used in numerous applications, including optical line terminations (OLTs) in passive optical networks (PONs).
摘要:
A coherent light source having a semiconductor laser resonator and an optical amplifier which amplifies coherent light emitted by the semiconductor laser resonator in response to current injection, in which the amount of current injected into the semiconductor laser is controlled for conformity with a chirp requirement of an optical communication system. The optical amplifier, which introduces no chirp, may be controlled to match an optical power requirement of the optical communication system. A heater may be provided to introduce a low frequency chirp in order to suppress interferometric intensity noise and unwanted second-order effects such as stimulated Brillouin Scattering. The optical amplifier may be monolithically formed with the semiconductor laser resonator, with separate electrodes provided for injecting current into the semiconductor laser resonator and the optical amplifier.
摘要:
An optical element comprises a substantially transparent material having opposing first and second transmission surfaces and a substantially flat mounting surface between them, an alignment mark, and an optical coating. The optical element is mounted self-supporting on a substrate with the mounting surface on a mating portion thereof. With the alignment mark aligned to a corresponding mark on the substrate, waveguides on the substrate can be end-coupled by reflection from the first transmission surface. The transmission and mounting surfaces are arranged to position the transmission surfaces at respective orientations relative to the substrate surface so that an optical beam propagating substantially parallel to the substrate surface and entering the optical element through the first transmission surface propagates as an optical beam through the optical element above the mounting surface and exits the optical element through the second transmission surface. The optical element can further include a lens or an aperture.
摘要:
An optical element comprises a substantially transparent material having opposing first and second transmission surfaces and a substantially flat mounting surface between them, an alignment mark, and an optical coating. The optical element is mounted self-supporting on a substrate with the mounting surface on a mating portion thereof. With the alignment mark aligned to a corresponding mark on the substrate, waveguides on the substrate can be end-coupled by reflection from the first transmission surface. The transmission and mounting surfaces are arranged to position the transmission surfaces at respective orientations relative to the substrate surface so that an optical beam propagating substantially parallel to the substrate surface and entering the optical element through the first transmission surface propagates as an optical beam through the optical element above the mounting surface and exits the optical element through the second transmission surface. The optical element can further include a lens or an aperture.
摘要:
A multiple-core optical waveguide comprises: a substrate; lower and upper waveguide core layers; a waveguide core between the upper and lower waveguide core layers; upper and lower cladding; and middle cladding between the upper and lower waveguide core layers substantially surrounding the waveguide core. Each of the lower, middle, and upper claddings has a refractive index less than refractive indices of the lower waveguide core layer, the upper waveguide core layer, and the waveguide core. Along at least a given portion of the optical waveguide, the upper and lower waveguide core layers extend bilaterally substantially beyond the lateral extent of a propagating optical mode supported by the optical waveguide, the lateral extent of the supported optical mode being determined at least in part by the width of the waveguide core along the given portion of the optical waveguide.