Abstract:
A maintenance system includes a plurality of apparatuses and a maintenance server. Each apparatus: transmits log data indicating a state of the apparatus to the maintenance server; receives a prediction model from the maintenance server, the prediction model predicting the occurrence of an abnormal state of the plurality of apparatuses; determines whether the abnormal state of the apparatus occurs based on the prediction model to generate a determination result; and transmits the determination result indicating the occurrence of the abnormal state of the apparatus to the maintenance server. The maintenance server: generates the prediction model based on the log data received from each of the plurality of apparatuses; and issues an instruction of a maintenance work for one or more of the plurality of apparatuses that transmit the determination result.
Abstract:
An image processing apparatus includes an auto document feeder, and can simultaneously scans both sides of an original at a fixed scan position during one-time original feed. The image processing apparatus further includes a first scanning unit that scans a front side of the original in a single-sided scan and a double-sided scan; and a second scanning unit that scans a back side of the original in the double-sided scan. In the double-sided scan, the first scanning unit and the second scanning unit scan the original by using the same scaling method. The first scanning unit uses different scaling methods between the single-sided scan and the double-sided scan based on an original scan condition.
Abstract:
Provided are a semiconductor manufacturing apparatus and method, capable of reliably and rapidly transporting a heated semiconductor wafer. the apparatus is provided for transporting a semiconductor wafer, which has been processed by desired treatment (for example, film formation) and is held by a susceptor equipped with a heater, to the outside by a transport arm which holds the semiconductor wafer by suction, by moving the susceptor to a certain position above a top of a wafer waiting stage and introducing the semiconductor wafer held by the susceptor onto the top of the wafer waiting stage. Then, the susceptor present on the top of the wafer waiting stage is moved in a horizontal direction. After a certain cooling time, the transport arm holds the semiconductor wafer placed on the wafer waiting stage by suction and transports the semiconductor wafer to outside.
Abstract:
In an image reading device, a reading unit scans first rectangle regions located within a maximum reading area equivalent to a maximum size of a document that can be scanned and acquires image data from the first rectangle regions. A transporting unit moves the reading unit to the first rectangle regions in a direction of movement opposite to a direction of movement in normal document reading. A document size judging unit detects whether a document exists in each first rectangle region based on the image data acquired by the reading unit and a predetermined threshold, so that a size of the document is judged. The reading unit is arranged to scan second rectangle regions located outside the maximum reading area, the second rectangles being different from the first rectangle regions, and acquire image data from the second rectangle regions.
Abstract:
Provided are a semiconductor manufacturing apparatus and method, capable of reliably and rapidly transporting a heated semiconductor wafer. the apparatus is provided for transporting a semiconductor wafer, which has been processed by desired treatment (for example, film formation) and is held by a susceptor equipped with a heater, to the outside by a transport arm which holds the semiconductor wafer by suction, by moving the susceptor to a certain position above a top of a wafer waiting stage and introducing the semiconductor wafer held by the susceptor onto the top of the wafer waiting stage. Then, the susceptor present on the top of the wafer waiting stage is moved in a horizontal direction. After a certain cooling time, the transport arm holds the semiconductor wafer placed on the wafer waiting stage by suction and transports the semiconductor wafer to outside.
Abstract:
Coil windings are provided on each predetermined pair of adjoining tooth portions in a 8-like configuration by: winding a lead wire around one of the tooth portions a predetermined number of times, starting from a point adjacent to one side portion of a teeth-adjoining region; then winding the lead wire around the other tooth portion the same number of times, starting from a point adjacent to the other side portion of the teeth-adjoining region opposite from the one side portion; and terminating the winding of the lead wire at a point adjacent to the teeth-adjoining region.
Abstract:
An accleration sensor comprises a fixed case member and a cover assembly collectively defining a closed space in which the oscillation plate and the piezoelectric element received therein. The oscillation plate and the piezoelectric element are oscillatably supported by a supporting portion formed on the central bottom portion of the fixed case member. The oscillation plate and the piezoelectric element are integrally oscillatable in two different modes consisting of: a 1/1 oscillation mode where the oscillation plate is irregularly deformed to have the peripheral portion oscillated with a single vector in the oscillation direction of the oscillation plate when the oscillation plate is oscillated with respect to the fixed case member at a resonance frequency f0; and a 1/2 oscillation mode where the oscillation plate is irregularly deformed to have two different half parts of the peripheral portion oscillated with their respective different vectors opposite to each other in the oscillation direction of the oscillation plate when the oscillation plate is oscillated with respect to the fixed case member at a noise frequency f01, and the resonance frequency f0 and the noise frequency f01 are out of the range of effective oscillation frequencies. Thus constructed acceleration sensor is of high performance and appropriate for automatic production at a low cost.
Abstract:
Process and apparatus for refining silicon by treatment in a graphite vessel with irradiation with an electron beam while removing impurity elements by evaporation. A single graphite vessel is used, or plural graphite vessels are arranged in sequence. During treatment in successive graphite vessels, molten silicon is poured in succession from one vessel to another. Use of graphite vessels improves heat efficiency, prevents contamination and produces refined silicon containing very low contents of impurities.
Abstract:
An order management system enables a customer to use a terminal device to order food, but can respond rapidly to changes and additions to the menu. When this system starts up, it transmits an operating program and image data from main management equipment to each of a number of order-taking terminal devices. Each order-taking terminal device stores the thus received operating program and image data and displays a menu screen on a display screen on the basis of the thus stored operating program and image data.