Abstract:
Embodiments include apparatuses, methods, and systems including a semiconductor photonic device having a waveguide disposed above a substrate. The waveguide has a first section including amorphous silicon with a first refractive index, and a second section including crystalline silicon with a second refractive index different from the first refractive index. The semiconductor photonic device further includes a heat element at a vicinity of the first section of the waveguide. The heat element is arranged to generate heat to transform the amorphous silicon of the first section of the waveguide to partially or completely crystallized crystalline silicon with a third refractive index. The amorphous silicon in the first section may be formed with silicon lattice defects caused by an element implanted into the first section. Other embodiments may also be described and claimed.
Abstract:
In one embodiment, a distributed feedback laser includes a laser comprising a waveguide, the waveguide having a variable width from a first end to a second end, the laser to generate optical energy of a plurality of lasing wavelengths. Other embodiments are described and claimed.
Abstract:
Embodiments include apparatuses, methods, and systems including a semiconductor photonic device having a waveguide disposed above a substrate. The waveguide has a first section including amorphous silicon with a first refractive index, and a second section including crystalline silicon with a second refractive index different from the first refractive index. The semiconductor photonic device further includes a heat element at a vicinity of the first section of the waveguide. The heat element is arranged to generate heat to transform the amorphous silicon of the first section of the waveguide to partially or completely crystallized crystalline silicon with a third refractive index. The amorphous silicon in the first section may be formed with silicon lattice defects caused by an element implanted into the first section. Other embodiments may also be described and claimed.
Abstract:
There is disclosed in one example a communication system, including: a data transmission interface; and a wavelength division multiplexing (WDM) silicon laser source to provide modulated data on a carrier laser via the data transmission interface, the WDM laser including a single laser cavity to generate an internally multiplexed multi-wavelength laser, the single laser cavity including a filter having a first grating period to generate a first wavelength and a second grating period to generate a second wavelength, the second grating period superimposed on the first grating period.
Abstract:
Technology for light detection and ranging (LIDAR) sensor can include an optical signal source, an optical modulation array and optical detector on the same integrated circuit (IC) chip, multi-chip module (MCM) or similar solid-state package.
Abstract:
Embodiments of the present disclosure are directed toward techniques and configurations for an optical coupler. In some embodiments, the device may include an optical waveguide to transmit light input from a light source. The optical waveguide may include a semiconductor layer, having a trench with one facet that comprises an edge formed under an approximately 45 degree angle and another facet formed substantially normal to the semiconductor layer. The edge may interface with another medium to form a mirror to receive inputted light and reflect received light substantially perpendicularly to propagate the received light. Other embodiments may be described and/or claimed.
Abstract:
Methods of forming microelectronic structures are described. Embodiments of those methods may include forming a photomask on a (110) silicon wafer substrate, wherein the photomask comprises a periodic array of parallelogram openings, and then performing a timed wet etch on the (110) silicon wafer substrate to form a diffraction grating structure that is etched into the (110) silicon wafer substrate.
Abstract:
Systems, apparatuses and methods include technology that executes, with a first plurality of panels, a first matrix-matrix multiplication operation of a first layer of an optical neural network (ONN) to generate output optical signals based on input optical signals that pass through an optical path of the ONN, and weights of the first layer of the ONN. The first plurality of panels includes an input panel, a weight panel and a photodetector panel. The executing includes generating, with the input panel, the input optical signals, where the input optical signals represent an input to the first matrix-matrix multiplication operation of the first layer of the ONN, representing, with the weight panel, the weights of the first layer of the ONN, and generating, with the photodetector panel, output photodetector signals based on the output optical signals that are generated based on the input optical signals and the weights.
Abstract:
Embodiments herein relate to an optical system coupled with or including a control logic. The control logic may be configured to identify, based on feedback provided by a photodiode (PD) of an optical receiver, that an amplitude of an optical marker signal output by an interferometer of the optical receiver is above a threshold value. The control logic may further be configured to adjust, based on the identification, a thermo-optic phase tuner of the interferometer, wherein adjustment of the thermo-optic phase tuner results in a change to the amplitude of the optical marker signal. Other embodiments may be described and/or claimed.
Abstract:
An apparatus comprising a substrate; a waveguide above the substrate; and an undercut into the substrate, the undercut beneath at least a portion of the waveguide, wherein a magnitude of a maximum length of the undercut is lower than a magnitude of a maximum depth of the undercut.