Abstract:
Exemplary aspects are directed toward resolving fault suppression in hardware, which at the same time does not incur a performance hit. For example, when multiple instructions are executing simultaneously, a mask can specify which elements need not be executed. If the mask is disabled, those elements do not need to be executed. A determination is then made as to whether a fault happens in one of the elements that have been disabled. If there is a fault in one of the elements that has been disabled, a state machine re-fetches the instructions in a special mode. More specifically, the state machine determines if the fault is on a disabled element, and if the fault is on a disabled element, then the state machine specifies that the fault should be ignored. If during the first execution there was no mask, if there is an error present during execution, then the element is re-run with the mask to see if the error is a “real” fault.
Abstract:
Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
Abstract:
Disclosed embodiments relate to executing a vector multiplication instruction. In one example, a processor includes fetch circuitry to fetch the vector multiplication instruction having fields for an opcode, first and second source identifiers, and a destination identifier, decode circuitry to decode the fetched instruction, execution circuitry to, on each of a plurality of corresponding pairs of fixed-sized elements of the identified first and second sources, execute the decoded instruction to generate a double-sized product of each pair of fixed-sized elements, the double-sized product being represented by at least twice a number of bits of the fixed size, and generate an unsigned fixed-sized result by rounding the most significant fixed-sized portion of the double-sized product to fit into the identified destination.
Abstract:
Embodiments detailed herein relate to matrix operations. In particular, the loading of a matrix (tile) from memory. For example, support for a loading instruction is described in at least a form of decode circuitry to decode an instruction having fields for an opcode, a source matrix operand identifier, and destination memory information, and execution circuitry to execute the decoded instruction to store each data element of configured rows of the identified source matrix operand to memory based on the destination memory information
Abstract:
Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
Abstract:
Embodiments detailed herein relate to matrix operations. For example, embodiments of instruction support for matrix (tile) dot product operations are detailed. Exemplary instructions including computing a dot product of signed words and accumulating in a double word with saturation; computing a dot product of bytes and accumulating in to a dword with saturation, where the input bytes can be signed or unsigned and the dword accumulation has output saturation; etc.
Abstract:
Embodiments detailed herein relate to matrix operations. For example, embodiments of instruction support for matrix (tile) dot product operations are detailed. Exemplary instructions including computing a dot product of signed words and accumulating in a double word with saturation; computing a dot product of bytes and accumulating in to a dword with saturation, where the input bytes can be signed or unsigned and the dword accumulation has output saturation; etc.
Abstract:
Embodiments detailed herein relate to matrix operations. In particular, tile diagonal support is described. For example, a processor is detailed having decode circuitry to decode an instruction having fields for an opcode, a source operand identifier, and a destination matrix operand identifier; and execution circuitry to execute the decoded instruction to write the identified source operand to each element along a main diagonal of the identified destination matrix operand.
Abstract:
Systems, apparatuses, and methods of performing in a computer processor broadcasting data in response to a single vector packed broadcasting instruction that includes a source writemask register operand, a destination vector register operand, and an opcode. In some embodiments, the data of the source writemask register is zero extended prior to broadcasting.