Abstract:
In a radio access network, user equipment (UE) is to encode signaling for sector-sweep transmission to a base station via a plurality of directional beams in a millimeter-wave radio band over a random-access shared channel during at least one contention period, and determine a transmission power setting for the directional transmission. The transmission power setting is based on a targeted received signal characteristic to be achieved at the base station using a selected beam direction, and the transmission power setting is determined based on transmission parameters of the UE and reception parameters of the base station, and on channel characteristics. The UE is to initiate transmission of the signaling using the transmission power setting for the plurality of directional beams, wherein the signaling is transmitted to be received according to a targeted received signal characteristic to be achieved at the base station.
Abstract:
An adaptation hardware accelerator comprises a calculation unit to receive inputs at predefined time interval(s) that correspond to a calculation iteration, the inputs associated with adaptive filters having taps, and determine correlation and cross-correlation data based thereon for a given iteration. The correlation data comprises a correlation matrix. Determining the matrix comprises determining submatrices in an upper triangular portion and a diagonal portion of the matrix. The accelerator comprises an adaptation core unit to determine adaptive weights associated with the adaptive filters, respectively, based on an adaptive algorithm, utilizing the correlation and cross correlation data. The accelerator unit comprises a convergence detector unit to determine a convergence parameter; and a controller to generate an iteration signal for each time interval based on the parameter. The iteration signal communicates to continue or conclude; the conclusion indicates determination of a final value of adaptive weights by the core unit.
Abstract:
A method of processing signals may include identifying a plurality of critical elements of a parameter vector based on one or more predefined criteria, wherein the parameter vector represents a relationship between the input signal vector and the output signal vector; identifying a reduced parameter update vector having a plurality of elements, wherein the elements are selected according to a criterion related to the relationship between the input signal vector and the output signal vector; updating the plurality of critical elements of the parameter vector using the reduced parameter update vector to generate an updated parameter vector, wherein the reduced parameter update vector has less elements than the parameter vector; and processing one or more signals associated with the input signal vector using the updated parameter vector.
Abstract:
A data processing system may include a transmit circuit configured to transmit a first signal sequence comprising one or more signals, a receive circuit configured to transmit a second signal sequence comprising one or more additional signals, wherein one or more signals of the second signal sequence comprise an interference component related to the first signal sequence, and a processing circuit. The processing circuit may be configured to generate a kernel set comprising one or more kernels based on the first signal sequence, wherein a first kernel of the kernel set comprises: a first complex exponential component of the first kernel based on the phase of a first signal of the first signal sequence, and a second complex exponential component of the first kernel based on the amplitude of the first signal of the first signal sequence, and apply the kernel set to generate a solution to a linear system, wherein the solution to the linear system represents a substantially linear relationship between the kernel set and the signal component of the second signal sequence arising from the first signal sequence.
Abstract:
A data processing system may include a transmit circuit configured to transmit a first signal sequence comprising one or more signals, a receive circuit configured to transmit a second signal sequence comprising one or more additional signals, wherein one or more signals of the second signal sequence comprise an interference component related to the first signal sequence, and a processing circuit. The processing circuit may be configured to generate a kernel set comprising one or more kernels based on the first signal sequence, wherein a first kernel of the kernel set comprises: a first complex exponential component of the first kernel based on the phase of a first signal of the first signal sequence, and a second complex exponential component of the first kernel based on the amplitude of the first signal of the first signal sequence, and apply the kernel set to generate a solution to a linear system, wherein the solution to the linear system represents a substantially linear relationship between the kernel set and the signal component of the second signal sequence arising from the first signal sequence.
Abstract:
A polynomial kernel generator is configured to mitigate nonlinearity in a receiver path from a transmitter path comprising a nonlinear component in a communication device or system. The polynomial kernel generator operates to generate polynomial kernels that can be utilized to model the nonlinearity as a function of a piecewise polynomial approximation applied to a nonlinear function of the nonlinearity. The polynomial kernel generator generates kernels in a multiplier less architecture with polynomial computations in a log domain using a fixed number of adders.
Abstract:
Embodiments of the present disclosure describe methods, apparatuses, and systems for enhanced control signaling using full-duplex communication in wireless communication networks. A base station may schedule a first user equipment (UE) for primary access to a set of time-frequency resources in a first communication direction (e.g., uplink or downlink). The base station may additionally schedule a second UE for secondary access to the same set of time-frequency resources in a second communication direction that is the opposite of the first communication direction. The secondary access may be used to communicate supplemental control information, such as a channel quality indicator (CQI) and/or modulation and coding scheme (MCS) feedback, hybrid automatic repeat request (HARQ) feedback, and/or multiple input multiple output (MIMO) feedback (e.g., including a rank indicator (RI) and/or a pre-coding matrix indicator (PMI). Other embodiments may be described and claimed.
Abstract:
Technologies for providing signal quality based route management for unmanned aerial vehicles include a device that includes circuitry to produce a data set indicative of a wireless communication signal quality at each of multiple locations in a geographic area. The circuitry is also to produce, as a function of the data set and a target wireless communication signal quality, a planned route for a vehicle through the geographic area.
Abstract:
A communication device and a method for determining an information from a second device including setting an initial beamforming pattern is provided. The initial beamforming pattern includes a beamforming direction and a corresponding beamforming area for each of the plurality of antenna ports, including determining a concerned direction interval based on overlapping beamforming areas of adjacent pairs of the plurality of antenna ports, receiving a signal from the second device, measuring a signal gain from the signal on each of the plurality of antenna ports, determining which concerned direction interval the second device occupies based on an antenna port having the highest signal gain and on one of the adjacent pair of antenna ports to the antenna port having the highest signal gain having a higher signal gain, and determining the information from the second device based on the determined concerned direction interval.
Abstract:
This disclosure describes systems, methods, and devices related to an sending request message based on received announcements system. A device may identify a transmitter announcement received from a first device. The device may identify a receiver announcement received from a second device. The device may cause to send a request message to transmit to a third device based at least in part on a predetermined threshold associated with the receiver announcement. The device may identify an indication that the third device is able to receive one or more packets from the device. The device may cause to send the one or more packets to the third device.